1 |
Yu J, Huang C, Sun Y, et al. Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial [J]. JAMA, 2019, 321 (20): 1983-1992.
|
2 |
Stevenson AR, Solomon MJ, Lumley JW, et al. Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCaRT randomized clinical trial[J]. JAMA, 2015, 314(13):1356-1363.
|
3 |
Leibetseder A, Petscharnig S, Primus M J, et al. LapGyn4: a dataset for 4 automatic content analysis problems in the domain of laparoscopic gynecology[C]// Proceedings of the 9th ACM Multimedia Systems Conference (MMSys 2018), Amsterdam, the Netherlands, 12-15 Jun 2018. New York: Association for Computing Machinery, 2018: 357-362. DOI: 10.5281/zenodo.1219280.
|
4 |
Zhou R, Wang D, Zhang H, et al. Vision techniques for anatomical structures in laparoscopic surgery: a comprehensive review[J]. Front Surg, 2025, 12: 1557153.
|
5 |
Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis[J]. Sci Robot, 2022, 7 (62): eabj2908.
|
6 |
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88.
|
7 |
Kojima S, Kitaguchi D, Igaki T, et al. Deep-learning-based semantic segmentation of autonomic nerves from laparoscopic images of colorectal surgery: an experimental pilot study[J]. Int J Surg, 2023, 109 (4): 813-820.
|
8 |
Narihiro S, Kitaguchi D, Hasegawa H, et al. Deep learning-based real-time ureter identification in laparoscopic colorectal surgery[J]. Dis Colon Rectum, 2024, 67 (10): e1596-e1599.
|
9 |
Madani A, Namazi B, Altieri M S, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg, 2022, 276 (2): 363-369.
|
10 |
马周,易跃雄,陈雨柔,等. 基于深度学习YOLOv5网络的机器人辅助单孔腹腔镜子宫切除术实时解剖标志指示系统[J]. 武汉大学学报(医学版), 2024, 45(2):152-158.
|
11 |
Madad Zadeh S, Francois T, Calvet L, et al. SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology[J]. Surg Endosc, 2020, 34 (12): 5377-5383.
|
12 |
Kitaguchi D, Lee Y, Hayashi K, et al. Development and validation of a model for laparoscopic colorectal surgical instrument recognition using convolutional neural network-based instance segmentation and videos of laparoscopic procedures[J]. JAMA Netw Open, 2022, 5 (8): e2226265.
|
13 |
Nwoye CI, Padoy N. SurgiTrack: fine-grained multi-class multi-tool tracking in surgical videos[J]. Med Image Anal, 2025, 101: 103438.
|
14 |
Twinanda AP, Shehata S, Mutter D, et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos [J]. IEEE Trans Med Imaging, 2017, 36 (1): 86-97.
|
15 |
Czempiel T, Paschali M, Keicher M, et al. Tecno: Surgical phase recognition with multi-stage temporal convolutional networks[C]. Medical Image Computing and Computer Assisted Intervention-MICCAI 2020: 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part III 23. Cham: Springer International Publishing, 2020: 343-352.
|
16 |
Horita K, Hida K, Itatani Y, et al. Real-time detection of active bleeding in laparoscopic colectomy using artificial intelligence[J]. Surg Endosc, 2024, 38 (6): 3461-3469.
|
17 |
Sunakawa T, Kitaguchi D, Kobayashi S, et al. Deep learning-based automatic bleeding recognition during liver resection in laparoscopic hepatectomy[J]. Surg Endosc, 2024, 38 (12): 7656-7662.
|
18 |
Zhang J, Huang J, Jin S, et al. Vision-language models for vision tasks: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2024, 46 (8): 5625-5644.
|
19 |
Yu G, Sun K, Xu C, et al. Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images[J]. Nat Commun, 2021, 12 (1): 6311.
|
20 |
Messaoudi H, Abbas M, Badic B, et al. Automatic future remnant segmentation in liver resection planning[J/OL]. Int J Comput Assist Radiol Surg, 2025, 20(5):837-845.
|
21 |
Nassar AHM, Hodson J, Ng HJ, et al. Predicting the difficult laparoscopic cholecystectomy: development and validation of a pre-operative risk score using an objective operative difficulty grading system[J]. Surg Endosc, 2020, 34(10):4549-4561.
|
22 |
Mascagni P, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning[J]. Ann Surg, 2022, 275 (5): 955-961.
|
23 |
Chung P, Fong CT, Walters AM, et al. Large language model capabilities in perioperative risk prediction and prognostication[J]. JAMA Surg, 2024, 159 (8): 928-937.
|
24 |
Bihorac A, Ozrazgat-Baslanti T, Ebadi A, et al. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery[J]. Ann Surg, 2019, 269 (4): 652-662.
|
25 |
Taha-Mehlitz S, Wentzler L, Angehrn F, et al. Machine-learning-based preoperative analytics for the prediction of anastomotic leakage in colorectal surgery: a Swiss pilot study[J]. Surg Endosc, 2024, 38 (7): 3672-3683.
|
26 |
Kiyasseh D, Ma R, Haque TF, et al. A vision transformer for decoding surgeon activity from surgical videos[J]. Nat Biomed Eng, 2023, 7 (6): 780-796.
|
27 |
祁宝莲,钟坤华,陈芋文. 基于卷积神经网络的半监督手术视频流程识别[J]. 计算机科学,2020, 47(z1):172-175.
|
28 |
Gao X, Jin Y, Long Y, et al. Trans-svnet: Accurate phase recognition from surgical videos via hybrid embedding aggregation transformer[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part IV 24. Cham: Springer International Publishing, 2021: 593-603.
|
29 |
Zhao Y, Li Y, Xing L, et al. The performance of artificial intelligence in cervical colposcopy: a retrospective data analysis [J]. J Oncol, 2022, 2022: 4370851.
|
30 |
Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep-learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Ann Oncol, 2018, 29 (8): 1836-1842.
|
31 |
Kletz S, Schoeffmann K, Husslein H. Learning the representation of instrument images in laparoscopy videos[J]. Healthc Technol Lett, 2019, 6 (6): 197-203.
|
32 |
花苏榕,王智弘,王晶,等. 深度学习技术识别纱布在腹腔镜胰腺手术中的应用价值[J]. 中华消化外科杂志,2021, 20(12):1324-1330.
|
33 |
Tashtoush A, Wang Y, Khasawneh MT, et al. Real-time object segmentation for laparoscopic cholecystectomy using YOLOv8[J]. Neural Computing and Applications, 2025, 37(4): 2697-2710. DOI: 10.1007/s00521-024-10713-1.
|
34 |
Maier-Hein L, Vedula SS, Speidel S, et al. Surgical data science for next-generation interventions[J]. Nat Biomed Eng, 2017, 1 (9): 691-696.
|
35 |
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Development and validation of a 3-dimensional convolutional neural network for automatic surgical skill assessment based on spatiotemporal video analysis[J]. JAMA Netw Open, 2021, 4(8):e2120786.
|
36 |
Igaki T, Kitaguchi D, Matsuzaki H, et al. Automatic surgical skill assessment system based on concordance of standardized surgical field development using artificial intelligence[J]. JAMA Surg, 2023, 158 (8): e231131.
|
37 |
Nguyen XA, Ljuhar D, Pacilli M, et al. Surgical skill levels: classification and analysis using deep neural network model and motion signals[J]. Comput Methods Programs Biomed, 2019, 177:1-8.
|
38 |
Brown JD, O Brien CE, Leung SC, et al. Using contact forces and robot arm accelerations to automatically rate surgeon skill at peg transfer[J]. IEEE Trans Biomed Eng, 2017, 64(9):2263-2275.
|
39 |
Shafiei SB, Shadpour S, Mohler JL, et al. Classification of subtask types and skill levels in robot-assisted surgery using EEG, eye-tracking, and machine learning[J]. Surg Endosc, 2024, 38 (9): 5137-5147.
|
40 |
何晓芳,陈洁,李秋萍,等. 基于机器学习算法的腹腔镜结直肠癌根治术后肠梗阻预测模型[J]. 机器人外科学杂志(中英文), 2024, 5(6):1205-1210.
|
41 |
李济振,朱恒立,付晴安,等. 基于机器学习的LPD术后临床相关胃排空延迟风险预测模型的构建[J]. 中华肝胆外科杂志,2025, 31(2):101-106.
|
42 |
胡晔,黄磊,吴慧,等. 基于机器学习的老年患者腹腔镜胆囊切除术后感染预测模型的构建[J]. 临床药物治疗杂志,2024, 22(6):66-70.
|
43 |
王晨,刘蕾,王蕾,等. 胸腔镜单肺叶切除术患者术后住院时间延长预测模型的构建[J]. 中华麻醉学杂志,2022, 42(10):1187-1191.
|
44 |
罗治文,陈晓,张业繁,等. 机器学习算法和COX列线图在肝细胞癌术后生存预测中的应用价值[J]. 中华消化外科杂志,2020, 19(2):166-178.
|
45 |
Li C, Qiao G, Li J, et al. An ultrasonic-based radiomics nomogram for distinguishing between benign and malignant solid renal masses[J]. Front Oncol, 2022, 12: 847805.
|
46 |
Kunze KN, Polce EM, Clapp I, et al. Machine learning algorithms predict functional improvement after hip arthroscopy for femoroacetabular impingement syndrome in athletes[J]. J Bone Joint Surg Am, 2021, 103(12):1055-1062.
|
47 |
Arai J, Aoki T, Sato M, et al. Machine-learning-based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy[J]. Gastrointest Endosc, 2022, 95(5): 864-872.
|
48 |
Hirsch R, Caron M, Cohen R, et al. Self-supervised learning for endoscopic video analysis[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 569-578.
|
49 |
Ramesh S, Srivastav V, Alapatt D, et al. Dissecting self-supervised learning methods for surgical computer vision[J]. Med Image Anal, 2023, 88: 102844.
|
50 |
Tajbakhsh N, Jeyaseelan L, Li Q, et al. Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation[J]. Med Image Anal, 2020, 63:101693.
|
51 |
Shahzad H, Veliky C, Le H, et al. Preserving privacy in big data research: the role of federated learning in spine surgery[J]. Eur Spine J, 2024, 33: 4076-4081.
|