切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2025, Vol. 18 ›› Issue (03) : 184 -187. doi: 10.3877/cma.j.issn.1674-6899.2025.03.011

综述

机器人辅助前列腺穿刺技术在前列腺癌早期诊断中的应用进展
刘若暄1,2, 吴岐佑1, 刘振华1, 杨璐1, 魏强1, 沈朋飞1, 涂祥1,()   
  1. 1610041 成都,四川大学华西医院泌尿外科
    2610041 成都,四川大学华西临床医学院
  • 收稿日期:2025-04-02 出版日期:2025-06-30
  • 通信作者: 涂祥
  • 基金资助:
    国家自然科学基金项目(81500522)

Progress of robot-assisted prostate puncture technique in the early diagnosis of prostate cancer

Ruoxuan Liu1,2, Qiyou Wu1, Zhenhua Liu1, Lu Yang1, Qiang Wei1, Pengfei Shen1, Xiang Tu1,()   

  1. 1Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
    2West China School of Medicine, Sichuan University, Chengdu 610041, China
  • Received:2025-04-02 Published:2025-06-30
  • Corresponding author: Xiang Tu
引用本文:

刘若暄, 吴岐佑, 刘振华, 杨璐, 魏强, 沈朋飞, 涂祥. 机器人辅助前列腺穿刺技术在前列腺癌早期诊断中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 184-187.

Ruoxuan Liu, Qiyou Wu, Zhenhua Liu, Lu Yang, Qiang Wei, Pengfei Shen, Xiang Tu. Progress of robot-assisted prostate puncture technique in the early diagnosis of prostate cancer[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(03): 184-187.

目的

探讨机器人辅助前列腺穿刺活检的进展以指导临床试验研究并促进诊疗技术的优化。

方法

概述前列腺穿刺活检的常用类型,包括核磁引导下、超声辅助下经直肠穿刺和经会阴穿刺,分析其优劣性,详细介绍机器人辅助前列腺穿刺活检技术的理论基础、发展历程以及不同技术路径的现状和优势。

结果

总结当前机器人辅助前列腺穿刺活检的应用现状,指出因技术等因素导致的智能化穿刺活检存在的问题,对未来智能化穿刺的发展方向进行展望。

结论

机器人辅助前列腺穿刺技术为前列腺癌的早期诊断提供更加高效、精确的技术支持,为患者提供更好的治疗效果。

Objective

To review the progress of robotic-assisted prostate aspiration biopsy to guide clinical trials and promote the optimization of diagnostic and therapeutic techniques.

Methods

The common types of prostate biopsy, including nuclear magnetic resonance guidance, ultrasound-guided transrectal puncture, and transperineal puncture, are summarized, their advantages and disadvantages are analyzed, and the theoretical basis and development history of robotic-assisted prostate biopsy, as well as the current status and advantages of the different technological routes, are presented in detail.

Results

The current status of robot-assisted prostate aspiration biopsy is summarized, the problems of intelligent aspiration biopsy due to technical factors are pointed out, and the future development direction of intelligent aspiration is prospected.

Conclusions

Robotic prostate aspiration technology provides more efficient and precise technical support for the early diagnosis of prostate cancer and better treatment outcomes for patients.

图1 机器人辅助前列腺活检穿刺技术发展历程
1
Ziegler A, Koch A, Krockenberger K, et al. Personalized medicine using DNA biomarkers:a review [J]. Hum Genet, 2012, 131:1627-1638.
2
Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location[J]. Am. J, Men′s Health, 2018, 12:1807-1823.
3
初子斌,徐烨,殷自强,等. 前列腺癌生物标志物研究进展[J]. 生物工程学报2024:1-24.
4
Azani A, Omran SP, Ghasrsaz H, et al. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer[J]. Pathol Res Pract, 2023, 248 (1) : 154618.
5
闫厚煜,邢金春,张开颜,等. 前列腺癌的早期诊断研究进展[J]. 临床泌尿外科杂志2020, 35 (3): 242-246.
6
Kravchick S, Peled R, Ben-Dor D, et al. Comparison of different local anesthesia techniques during TRUS-guided biopsies: a prospective pilot study[J]. Urology, 2005, 65(1):109-113.
7
Areal Calama J. Conventional transrectal ultrasound guided biopsy. Current role, indications, techniques and limitations[J]. Arch Esp Urol, 2015, 68(3):282-295.
8
Tops SCM, Grootenhuis JGA, Derksen AM, et al. The effect of different types of prostate biopsy techniques on post-biopsy infectious complications[J]. J Urol, 2022, 208(1):109-118.
9
Ho H, Yuen JS, Cheng CW. Robotic prostate biopsy and its relevance to focal therapy of prostate cancer [J]. Nat Rev Urol, 2011, 8: 579-585.
10
Yarlagadda VK, Lai WS, Gordetsky JB, et al. MRI/US fusion-guided prostate biopsy allows for equivalent cancer detection with significantly fewer needle cores in biopsy-naive men[J]. Diagn Interv Radiol, 2018, 24(3): 115-120.
11
Washino S, Okochi T, Saito K, et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy na?ve patients[J]. BJU Int, 2017, 119(2): 225-233.
12
Rais-Bahrami S, Siddiqui MM, Vourganti S, et al. Diagnostic value of biparametric magnetic resonance imaging (MRI) as an adjunct to prostate-specific antigen (PSA)-based detection of prostate cancer in men without prior biopsies[J]. BJU Int, 2015, 115(3): 381-388.
13
Zattoni F, Fasulo V Kasivisvanathan V et al. Enhancing prostate cancer detection accuracy in magnetic resonance imaging-targeted prostate biopsy: optimizing the number of cores taken[J]. Eur Urol Open Sci, 2024, 66:16-25.
14
Biswas P, Dehghani H, Sikander S, et al. Kinematic and mechanical modelling of a novel 4-DOF robotic needle guide for MRI-guided prostate intervention[J]. Biomed Eng Adv, 2022, 4:100036.
15
Phee L, Yuen J, Xiao D, et al. Ultrasound guided robotic biopsy of the prostate [J]. Int. J. Humanoid Rob, 2006, 3: 463-483.
16
Ho HSS, Mohan P, Lim ED, et al. Robotic ultrasound-guided prostate intervention device: system description and results from phantom studies[J]. Int. J. Med, Rob, 2009, 5:51-58.
17
Stoianovici D, Kim C, Petrisor D, et al. MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial[J]. IEEE ASME Trans Mechatron, 2017, 22(1):115-126.
18
Busam B, Ruhkamp P, Virga S, et al. Markerless inside-out tracking for 3d ultrasound compounding[A]. In: Stoyanov D, Taylor Z, Aylward S (eds). Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation [C]. Springer, Granada, Spain: MICCAI 2018, LNCS 11042:56-64.
19
Peng T, Zhao J, Gu YD, et al. H-ProMed: ultrasound image segmentation based on the evolutionary neural network and an improved principal curve[J]. Pattern Recognition, 2022, 131:108890.
20
Fichtinger G, Krieger A, Susil RC, et al. Transrectal prostate biopsy inside closed MRI scanner with remote actuation, under real-time image guidance[A]. In: Dohi, T., Kikinis, R. (eds). Medical Image Computing and Computer-Assisted Intervention— MICCAI 2002[C]. Springer, Berlin, Heidelberg:MICCAI 2002,LNCS 2488:91-98.
21
Krieger A, Iordachita II, Guion P, et al. An MRI-compatible robotic system with hybrid tracking for mri-guided prostate intervention[J]. IEEE Trans Biomed Eng, 2011, 58(11): 3049-3060.
22
Elhawary H, Zivanovic A, Rea M,et al. A modular approach to MRI-compatible robotics: using robotic modules with interconnectable 1-DoF stages[J]. IEEE Eng Med Biol Mag, 2008, 27(3):35-41.
23
Elhawary H, Tse ZTH, Rea M, et al. Robotic system for transrectal biopsy of the prostate: real-time guidance under MRI[J]. IEEE Eng Med Biol Mag, 2010, 29(2):78-86.
24
Goldenberg AA, Trachtenberg J, Kucharczyk W, et al. Robotic system for closed-bore mri-guided prostatic interventions[J]. IEEE/ASME Trans Mechatron, 2008, 13(3): 374-379.
25
Fischer G, Iordachita I, Csoma C, et al. MRI-compatible pneumatic robot for transperineal prostate needle placement[J]. IEEE/ASME Trans Mechatron, 2008, 13(3):295-305.
26
Stoianovici D, Kim C, Srimathveeravalli G, et al. MRI-Safe Robot for Endorectal Prostate Biopsy[J]. IEEE/ASME Trans Mechatron, 2014, 19(4):1289-1299.
27
Stoianovici D, Jun C, Lim S, et al. Multi-imager compatible, MR safe, remote center of motion needle-guide robot[J]. IEEE Trans Biomed Eng, 2018, 65(1):165-177.
28
Aleong AM, Looi T, Luo K, et al. Preliminary study of a modular MR-compatible robot for image-guided insertion of multiple needles[J]. Front Oncol, 2022, 12:1-13.
29
Zhang YD, Yuan QH, Muzzammil HM, et al. Image-guided prostate biopsy robots: a review[J]. Math Biosci Eng, 2023, 20(8):15135-15166.
30
Zhang S, Jiang S, Yang Z, et al. An ultrasound image navigation robotic prostate brachytherapy system based on US to MRI deformable image registration method[J]. Hell J Nucl Med, 2016, 19(3):223-230.
31
Wang W, Pan B, Fu Y, et al. Development of a transperineal prostate biopsy robot guided by MRI-TRUS image[J]. Int. J. Med. Rob. Comput. Assisted Surg, 2021, 17: e2266.
32
Altini N, Brunetti A, Napoletano VP, et al. A fusion biopsy framework for prostate cancer based on deformable superellipses and nnU-Net[J]. Bioengineering, 2022; 9(8):343.
[1] 唐浩然, 周彪, 巴特, 李洋洋. 严重烧伤后脓毒症早期诊断相关生物标记物的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 70-74.
[2] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[3] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[4] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[5] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[6] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[7] 董振阳, 瞿旻, 王燕, 张韻, 高旭. 序贯多学科会诊模式在前列腺癌全程管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 152-158.
[8] 周松, 蒋湘勇, 康海, 杨科, 危安, 唐振华, 李铁求. 超声造影诊断前列腺癌的应用价值:一项荟萃分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 159-166.
[9] 潘永昇, 江杰, 曹栋梁, 季陈, 姜丽丽, 陈建刚, 朱华, 郑兵. 经会阴认知融合靶向穿刺在PI-RADS V2.1评分为五分患者中的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 167-173.
[10] 万颂, 刘璇, 黄源兴, 江文聪, 周宇林, 习明. 胆固醇生物合成相关基因对前列腺癌预后和治疗的意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 205-215.
[11] 罗添龙, 贺情情, 黄海. 泌尿功能障碍慢性病的长期综合管理和持久康复实践[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 21-26.
[12] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[13] 柳凯, 李向各, 王成, 汤润. ZEB1 通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 157-166.
[14] 鲍文海, 阮勤, 李菲菲. Th17/Treg 免疫失衡在儿童腹型过敏性紫癜诊断与病情评估中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 162-167.
[15] 石继开, 王平, 陈军. 基于胆固醇代谢相关基因构建前列腺癌复发的风险预测模型[J/OL]. 中华老年病研究电子杂志, 2025, 12(01): 22-29.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?