1 |
Capezzuoli T, Toscano F, Ceccaroni M, et al. Conservative surgical treatment for adenomyosis: New options for looking beyond uterus removal[J]. Best Pract Res Clin Obstet Gynaecol, 2024, 95:102507.
|
2 |
Andres MP, Borrelli GM, Abrão MS. Advances on minimally invasive approach for benign total hysterectomy: a systematic review[J]. F1000Res, 2017, 6:1295.
|
3 |
Ribeiro F, Ferreira H. Novel minimally invasive surgical approaches to endometriosis and adenomyosis: a comprehensive review[J]. J Clin Med, 2024, 13(22):6844.
|
4 |
Barat M, Dohan A, Kohi M, et al. Treatment of adenomyosis, abdominal wall endometriosis and uterine leiomyoma with interventional radiology: a review of current evidences[J]. Diagn Interv Imaging, 2024, 105(3):87-96.
|
5 |
Gracia M, de Guirior C, Valdés-Bango M, et al. Adenomyosis is an independent risk factor for complications in deep endometriosis laparoscopic surgery[J]. Scientific reports, 2022;12(1):7086.
|
6 |
Lin M, Lin L, Lin L, et al. A bibliometric analysis of the advance of artificial intelligence in medicine[J]. Front Med (Lausanne), 2025, 12:1504428.
|
7 |
Aydin S, Karabacak M, Vlachos V, et al. Large language models in patient education: a scoping review of applications in medicine[J]. Front Med (Lausanne), 2024, 11:1477898.
|
8 |
Oliveira JA, Eskandar K, Kar E, et al. Understanding AI′s role in endometriosis patient education and evaluating its information and accuracy: systematic review[J]. Jmir ai, 2024, 3:e64593.
|
9 |
Tellum T, Nygaard S, Lieng M. Noninvasive diagnosis of adenomyosis: a structured review and meta-analysis of diagnostic accuracy in imaging[J]. Journal of minimally invasive gynecology, 2020, 27(2):408-418.e3.
|
10 |
Tan S, Leonardi M, Lo G, et al. Role of ultrasonography in the diagnosis of endometriosis in infertile women: Ovarian endometrioma, deep endometriosis, and superficial endometriosis[J]. Best practice & research Clinical obstetrics & gynaecology, 2024, 92:102450.
|
11 |
Canis M, Gremeau AS, Bourdel N. Elusive adenomyosis: a plea for an international classification system to allow artificial intelligence approaches to reset our clinical management[J]. Fertility and sterility, 2018, 110(6):1039-1040.
|
12 |
Sahni NR, Carrus B. Artificial intelligence in U.S. Health care delivery[J]. N Engl J Med, 2023, 389(4):348-358.
|
13 |
Torres-Velázquez M, Chen WJ, Li X, et al. Application and construction of deep learning networks in medical imaging[J]. IEEE Trans Radiat Plasma Med Sci, 2021, 5(2):137-159.
|
14 |
Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection[J]. Multimed Tools Appl, 2022:1-39.
|
15 |
Zhao Q, Yang T, Xu C, et al. Automatic diagnosis for adenomyosis in ultrasound images by deep neural networks[J]. Eur J Obstet Gynecol Reprod Biol, 2024, 301:128-134.
|
16 |
Raimondo D, Raffone A, Aru AC, et al. Application of deep learning model in the sonographic diagnosis of uterine adenomyosis[J]. Int J Environ Res Public Health, 2023, 20(3):1724.
|
17 |
Guiot J, Vaidyanathan A, Deprez L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1):426-440.
|
18 |
Maniaci A, Lavalle S, Gagliano C, et al. The integration of radiomics and artificial intelligence in modern medicine[J]. Life (Basel), 2024, 14(10):1248.
|
19 |
Burla L, Sartoretti E, Mannil M, et al. MRI-based radiomics as a promising noninvasive diagnostic technique for adenomyosis[J]. Journal of clinical medicine, 2024, 13(8):2344.
|
20 |
Brunelli AC, Brito LGO, Moro FAS, et al. Ultrasound elastography for the diagnosis of endometriosis and adenomyosis: a systematic review with meta-analysis[J]. Ultrasound Med Biol, 2023, 49(3):699-709.
|
21 |
Xue LY, Jiang ZY, Fu TT, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis[J]. Eur Radiol, 2020, 30(5):2973-2983.
|
22 |
Dessouky R, Gamil SA, Nada MG, et al. Management of uterine adenomyosis: current trends and uterine artery embolization as a potential alternative to hysterectomy[J]. Insights Imaging, 2019, 10(1):48.
|
23 |
Jin W, Wang S, Wang T, et al. Multi-machine learning model based on habitat subregions for outcome prediction in adenomyosis treated by uterine artery embolization[J]. Acad Radiol, 2024,31(12):4985-4995.
|
24 |
Bahutair SN, Alhubaishi LY. High-intensity focused ultrasound in adenomyosis treatment: insights on safety, efficacy, and reproductive prospects[J]. Women′s health (London, England), 2024,20:17455057241295593.
|
25 |
Li Z, Zhang J, Song Y, et al. Utilization of radiomics to predict long-term outcome of magnetic resonance-guided focused ultrasound ablation therapy in adenomyosis[J]. Eur Radiol, 2021, 31(1):392-402.
|
26 |
Ying J, Jing X, Gao F, et al. Prediction of ablation rate for high-intensity focused ultrasound therapy of adenomyosis in MR images based on multi-model fusion[J]. J Imaging Inform Med, 2024,37(4):1579-1590.
|
27 |
Reid S, Condous G. Transvaginal sonographic sliding sign: accurate prediction of pouch of Douglas obliteration[J]. Ultrasound Obstet Gynecol, 2013, 41(6):605-607.
|
28 |
Manganaro L, Vittori G, Vinci V, et al. Beyond laparoscopy: 3-T magnetic resonance imaging in the evaluation of posterior cul-de-sac obliteration[J]. Magn Reson Imaging. Dec, 2012,30(10):1432-1438.
|
29 |
Maicas G, Leonardi M, Avery J, et al. Deep learning to diagnose pouch of Douglas obliteration with ultrasound sliding sign[J]. Reproduction & fertility, 2021, 2(4):236-243.
|
30 |
Wang H, Butler D, Zhang Y, et al. Human-AI collaborative multi-modal multi-rater learning for endometriosis diagnosis[J]. Phys Med Biol, 2024, 70(1).
|
31 |
Saremi A, Bahrami H, Salehian P, et al. Treatment of adenomyomectomy in women with severe uterine adenomyosis using a novel technique[J]. Reproductive biomedicine online, 2014, 28(6):753-760.
|
32 |
Bourdel N, Chauvet P, Calvet L, et al. Use of augmented reality in gynecologic surgery to visualize adenomyomas[J]. Journal of minimally invasive gynecology, 2019,26(6):1177-1180.
|
33 |
Levin I, Rapoport Ferman J, Bar O, et al. Introducing surgical intelligence in gynecology: Automated identification of key steps in hysterectomy[J]. Int J Gynaecol Obstet, 2024, 166(3):1273-1278.
|
34 |
Chu Z, Jia L, Dai J, et al. Effects of different treatment methods on clinical efficacy and fertility outcomes of patients with adenomyosis[J]. J Ovarian Res, 2024, 17(1):16.
|
35 |
Sadeghi-Goughari M, Rajabzadeh H, Han JW, et al. Artificial intelligence-assisted ultrasound-guided focused ultrasound therapy: a feasibility study[J]. Int J Hyperthermia, 2023, 40(1):2260127.
|
36 |
Zimmermann C, Michelmann A, Daniel Y, et al. Application of deep learning for real-time ablation zone measurement in ultrasound imaging[J]. Cancers (Basel), 2024, 16(9):1700.
|
37 |
Xiong Y, Zheng Y, Long W, et al. Study on microwave ablation temperature prediction model based on grayscale ultrasound texture and machine learning[J]. PLoS One, 2024, 19(9):e0308968.
|
38 |
Zhang S, Wu S, Shang S, et al. Detection and monitoring of thermal lesions induced by microwave ablation using ultrasound imaging and convolutional neural networks[J]. IEEE J Biomed Health Inform, 2020, 24(4):965-973.
|
39 |
Luan S, Ji Y, Liu Y, et al. AI-powered ultrasonic thermometry for HIFU therapy in deep organ[J]. Ultrason Sonochem, 2024, 111:107154.
|
40 |
Ning G, Zhang X, Zhang Q, et al. Real-time and multimodality image-guided intelligent HIFU therapy for uterine fibroid[J]. Theranostics,2020, 10(10):4676-4693.
|
41 |
Khattar H, Goel R, Kumar P. Artificial intelligence in gynaecological malignancies: perspectives of a clinical oncologist[J]. Cureus, 2023,15(9):e45660.
|
42 |
Bang CS, Lee JJ, Baik GH. Artificial intelligence for the prediction of helicobacter pylori infection in endoscopic images: systematic review and meta-analysis of diagnostic test accuracy[J]. J Med Internet Res, 2020, 22(9):e21983.
|
43 |
Ogawa M, Miyoshi N, Tamura S, et al. Ergonomic and sustainable posture for gynecological laparoscopic surgeons determined based on images analyzed using artificial intelligence[J]. Biomed Rep, 2024,21(6):174.
|
44 |
Chapron C, Vannuccini S, Santulli P, et al. Diagnosing adenomyosis: an integrated clinical and imaging approach[J]. Human reproduction update, 2020,26(3):392-411.
|
45 |
Leaf MC, Musselman K, Wang KC. Cutting-edge care: unleashing artificial intelligence′s potential in gynecologic surgery[J]. Curr Opin Obstet Gynecol, 2024, 36(4):255-259.
|
46 |
Shim JI, Jo EH, Kim M, et al. A comparison of surgical outcomes between robot and laparoscopy-assisted adenomyomectomy[J]. Medicine (Baltimore), 2019, 98(18):e15466.
|
47 |
Chung YJ, Kang SY, Choi MR, et al. Robot-assisted laparoscopic adenomyomectomy for patients who want to preserve fertility[J]. Yonsei Med J, 2016, 57(6):1531-1534.
|
48 |
Hijazi A, Chung YJ, Sinan N, et al. A novel technique for myometrial defect closure after robot-assisted laparoscopic adenomyomectomy: a retrospective cohort study[J]. Taiwan J Obstet Gynecol, 2022,61(1):75-79.
|
49 |
Zhang C, Hallbeck MS, Salehinejad H, et sl. The integration of artificial intelligence in robotic surgery: a narrative review[J]. Surgery, 2024, 176(3):552-557.
|
50 |
Cetera GA-O, Tozzi AA-OX, Chiappa V, et al. Artificial intelligence in the management of women with endometriosis and adenomyosis: can machines ever be worse than humans?[J]. J Clin Med, 2024, 13(10):2950.
|
51 |
Liu BHM, Lin Y, Long X, et al. Utilizing AI for the identification and validation of novel therapeutic targets and repurposed drugs for endometriosis[J]. Adv Sci (Weinh), 2025, 12(5):e2406565.
|