切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2025, Vol. 18 ›› Issue (03) : 172 -176. doi: 10.3877/cma.j.issn.1674-6899.2025.03.009

综述

人工智能在子宫腺肌病微创治疗中的应用进展
赵婷, 易晓芳()   
  1. 200011 上海,复旦大学附属妇产医院
  • 收稿日期:2025-05-05 出版日期:2025-06-30
  • 通信作者: 易晓芳
  • 基金资助:
    国家自然科学基金(82301858); 上海市妇科疾病临床研究中心(22MC1940200)

The application progress of artificial intelligence in minimally invasive treatment of adenomyosis

Ting Zhao, Xiaofang Yi()   

  1. Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
  • Received:2025-05-05 Published:2025-06-30
  • Corresponding author: Xiaofang Yi
引用本文:

赵婷, 易晓芳. 人工智能在子宫腺肌病微创治疗中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 172-176.

Ting Zhao, Xiaofang Yi. The application progress of artificial intelligence in minimally invasive treatment of adenomyosis[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(03): 172-176.

本文全面综述了人工智能(artificial intelligence, AI)在子宫腺肌病微创治疗的"术前诊断-治疗决策-术中导航"全流程的应用现状;简要介绍了深度学习算法联合弹性超声对诊断子宫腺肌病的应用前景以及AI对道格拉斯窝封闭等特殊场景的前沿应用;同时也指出了面临的挑战,为进一步开展多学科研究、构建伦理共识与临床标准化应用提出了展望。AI赋能子宫腺肌病的微创治疗在术前精准评估、个性化治疗策略制定以及术中导航等方面表现出广阔应用前景,尚需前瞻性多中心研究验证其临床效益。

This paper comprehensively reviews the current application status of artificial intelligence (AI) in the entire process of "preoperative diagnosis - treatment decision-making - intraoperative navigation" for the minimally invasive treatment of adenomyosis. It briefly introduces the application prospects of deep learning algorithms combined with elastography in the diagnosis of adenomyosis, as well as the cutting-edge applications of AI in special scenarios such as the obliteration of the Douglas pouch. At the same time, it also points out the challenges faced and puts forward prospects for the further development of interdisciplinary research, the establishment of ethical consensus, and the standardized clinical application.

1
Capezzuoli T, Toscano F, Ceccaroni M, et al. Conservative surgical treatment for adenomyosis: New options for looking beyond uterus removal[J]. Best Pract Res Clin Obstet Gynaecol, 2024, 95:102507.
2
Andres MP, Borrelli GM, Abrão MS. Advances on minimally invasive approach for benign total hysterectomy: a systematic review[J]. F1000Res, 2017, 6:1295.
3
Ribeiro F, Ferreira H. Novel minimally invasive surgical approaches to endometriosis and adenomyosis: a comprehensive review[J]. J Clin Med, 2024, 13(22):6844.
4
Barat M, Dohan A, Kohi M, et al. Treatment of adenomyosis, abdominal wall endometriosis and uterine leiomyoma with interventional radiology: a review of current evidences[J]. Diagn Interv Imaging, 2024, 105(3):87-96.
5
Gracia M, de Guirior C, Valdés-Bango M, et al. Adenomyosis is an independent risk factor for complications in deep endometriosis laparoscopic surgery[J]. Scientific reports, 2022;12(1):7086.
6
Lin M, Lin L, Lin L, et al. A bibliometric analysis of the advance of artificial intelligence in medicine[J]. Front Med (Lausanne), 2025, 12:1504428.
7
Aydin S, Karabacak M, Vlachos V, et al. Large language models in patient education: a scoping review of applications in medicine[J]. Front Med (Lausanne), 2024, 11:1477898.
8
Oliveira JA, Eskandar K, Kar E, et al. Understanding AI′s role in endometriosis patient education and evaluating its information and accuracy: systematic review[J]. Jmir ai, 2024, 3:e64593.
9
Tellum T, Nygaard S, Lieng M. Noninvasive diagnosis of adenomyosis: a structured review and meta-analysis of diagnostic accuracy in imaging[J]. Journal of minimally invasive gynecology, 2020, 27(2):408-418.e3.
10
Tan S, Leonardi M, Lo G, et al. Role of ultrasonography in the diagnosis of endometriosis in infertile women: Ovarian endometrioma, deep endometriosis, and superficial endometriosis[J]. Best practice & research Clinical obstetrics & gynaecology, 2024, 92:102450.
11
Canis M, Gremeau AS, Bourdel N. Elusive adenomyosis: a plea for an international classification system to allow artificial intelligence approaches to reset our clinical management[J]. Fertility and sterility, 2018, 110(6):1039-1040.
12
Sahni NR, Carrus B. Artificial intelligence in U.S. Health care delivery[J]. N Engl J Med, 2023, 389(4):348-358.
13
Torres-Velázquez M, Chen WJ, Li X, et al. Application and construction of deep learning networks in medical imaging[J]. IEEE Trans Radiat Plasma Med Sci, 2021, 5(2):137-159.
14
Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection[J]. Multimed Tools Appl, 2022:1-39.
15
Zhao Q, Yang T, Xu C, et al. Automatic diagnosis for adenomyosis in ultrasound images by deep neural networks[J]. Eur J Obstet Gynecol Reprod Biol, 2024, 301:128-134.
16
Raimondo D, Raffone A, Aru AC, et al. Application of deep learning model in the sonographic diagnosis of uterine adenomyosis[J]. Int J Environ Res Public Health, 2023, 20(3):1724.
17
Guiot J, Vaidyanathan A, Deprez L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1):426-440.
18
Maniaci A, Lavalle S, Gagliano C, et al. The integration of radiomics and artificial intelligence in modern medicine[J]. Life (Basel), 2024, 14(10):1248.
19
Burla L, Sartoretti E, Mannil M, et al. MRI-based radiomics as a promising noninvasive diagnostic technique for adenomyosis[J]. Journal of clinical medicine, 2024, 13(8):2344.
20
Brunelli AC, Brito LGO, Moro FAS, et al. Ultrasound elastography for the diagnosis of endometriosis and adenomyosis: a systematic review with meta-analysis[J]. Ultrasound Med Biol, 2023, 49(3):699-709.
21
Xue LY, Jiang ZY, Fu TT, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis[J]. Eur Radiol, 2020, 30(5):2973-2983.
22
Dessouky R, Gamil SA, Nada MG, et al. Management of uterine adenomyosis: current trends and uterine artery embolization as a potential alternative to hysterectomy[J]. Insights Imaging, 2019, 10(1):48.
23
Jin W, Wang S, Wang T, et al. Multi-machine learning model based on habitat subregions for outcome prediction in adenomyosis treated by uterine artery embolization[J]. Acad Radiol, 2024,31(12):4985-4995.
24
Bahutair SN, Alhubaishi LY. High-intensity focused ultrasound in adenomyosis treatment: insights on safety, efficacy, and reproductive prospects[J]. Women′s health (London, England), 2024,20:17455057241295593.
25
Li Z, Zhang J, Song Y, et al. Utilization of radiomics to predict long-term outcome of magnetic resonance-guided focused ultrasound ablation therapy in adenomyosis[J]. Eur Radiol, 2021, 31(1):392-402.
26
Ying J, Jing X, Gao F, et al. Prediction of ablation rate for high-intensity focused ultrasound therapy of adenomyosis in MR images based on multi-model fusion[J]. J Imaging Inform Med, 2024,37(4):1579-1590.
27
Reid S, Condous G. Transvaginal sonographic sliding sign: accurate prediction of pouch of Douglas obliteration[J]. Ultrasound Obstet Gynecol, 2013, 41(6):605-607.
28
Manganaro L, Vittori G, Vinci V, et al. Beyond laparoscopy: 3-T magnetic resonance imaging in the evaluation of posterior cul-de-sac obliteration[J]. Magn Reson Imaging. Dec, 2012,30(10):1432-1438.
29
Maicas G, Leonardi M, Avery J, et al. Deep learning to diagnose pouch of Douglas obliteration with ultrasound sliding sign[J]. Reproduction & fertility, 2021, 2(4):236-243.
30
Wang H, Butler D, Zhang Y, et al. Human-AI collaborative multi-modal multi-rater learning for endometriosis diagnosis[J]. Phys Med Biol, 2024, 70(1).
31
Saremi A, Bahrami H, Salehian P, et al. Treatment of adenomyomectomy in women with severe uterine adenomyosis using a novel technique[J]. Reproductive biomedicine online, 2014, 28(6):753-760.
32
Bourdel N, Chauvet P, Calvet L, et al. Use of augmented reality in gynecologic surgery to visualize adenomyomas[J]. Journal of minimally invasive gynecology, 2019,26(6):1177-1180.
33
Levin I, Rapoport Ferman J, Bar O, et al. Introducing surgical intelligence in gynecology: Automated identification of key steps in hysterectomy[J]. Int J Gynaecol Obstet, 2024, 166(3):1273-1278.
34
Chu Z, Jia L, Dai J, et al. Effects of different treatment methods on clinical efficacy and fertility outcomes of patients with adenomyosis[J]. J Ovarian Res, 2024, 17(1):16.
35
Sadeghi-Goughari M, Rajabzadeh H, Han JW, et al. Artificial intelligence-assisted ultrasound-guided focused ultrasound therapy: a feasibility study[J]. Int J Hyperthermia, 2023, 40(1):2260127.
36
Zimmermann C, Michelmann A, Daniel Y, et al. Application of deep learning for real-time ablation zone measurement in ultrasound imaging[J]. Cancers (Basel), 2024, 16(9):1700.
37
Xiong Y, Zheng Y, Long W, et al. Study on microwave ablation temperature prediction model based on grayscale ultrasound texture and machine learning[J]. PLoS One, 2024, 19(9):e0308968.
38
Zhang S, Wu S, Shang S, et al. Detection and monitoring of thermal lesions induced by microwave ablation using ultrasound imaging and convolutional neural networks[J]. IEEE J Biomed Health Inform, 2020, 24(4):965-973.
39
Luan S, Ji Y, Liu Y, et al. AI-powered ultrasonic thermometry for HIFU therapy in deep organ[J]. Ultrason Sonochem, 2024, 111:107154.
40
Ning G, Zhang X, Zhang Q, et al. Real-time and multimodality image-guided intelligent HIFU therapy for uterine fibroid[J]. Theranostics2020, 10(10):4676-4693.
41
Khattar H, Goel R, Kumar P. Artificial intelligence in gynaecological malignancies: perspectives of a clinical oncologist[J]. Cureus, 2023,15(9):e45660.
42
Bang CS, Lee JJ, Baik GH. Artificial intelligence for the prediction of helicobacter pylori infection in endoscopic images: systematic review and meta-analysis of diagnostic test accuracy[J]. J Med Internet Res, 2020, 22(9):e21983.
43
Ogawa M, Miyoshi N, Tamura S, et al. Ergonomic and sustainable posture for gynecological laparoscopic surgeons determined based on images analyzed using artificial intelligence[J]. Biomed Rep, 2024,21(6):174.
44
Chapron C, Vannuccini S, Santulli P, et al. Diagnosing adenomyosis: an integrated clinical and imaging approach[J]. Human reproduction update, 2020,26(3):392-411.
45
Leaf MC, Musselman K, Wang KC. Cutting-edge care: unleashing artificial intelligence′s potential in gynecologic surgery[J]. Curr Opin Obstet Gynecol, 2024, 36(4):255-259.
46
Shim JI, Jo EH, Kim M, et al. A comparison of surgical outcomes between robot and laparoscopy-assisted adenomyomectomy[J]. Medicine (Baltimore), 2019, 98(18):e15466.
47
Chung YJ, Kang SY, Choi MR, et al. Robot-assisted laparoscopic adenomyomectomy for patients who want to preserve fertility[J]. Yonsei Med J, 2016, 57(6):1531-1534.
48
Hijazi A, Chung YJ, Sinan N, et al. A novel technique for myometrial defect closure after robot-assisted laparoscopic adenomyomectomy: a retrospective cohort study[J]. Taiwan J Obstet Gynecol, 2022,61(1):75-79.
49
Zhang C, Hallbeck MS, Salehinejad H, et sl. The integration of artificial intelligence in robotic surgery: a narrative review[J]. Surgery, 2024, 176(3):552-557.
50
Cetera GA-O, Tozzi AA-OX, Chiappa V, et al. Artificial intelligence in the management of women with endometriosis and adenomyosis: can machines ever be worse than humans?[J]. J Clin Med, 2024, 13(10):2950.
51
Liu BHM, Lin Y, Long X, et al. Utilizing AI for the identification and validation of novel therapeutic targets and repurposed drugs for endometriosis[J]. Adv Sci (Weinh), 2025, 12(5):e2406565.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[3] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[4] 张克诚, 王瑞, 易磊, 周增丁. 烧烫伤创面深度评估模型HFNet 的构建及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 192-198.
[5] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[6] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[7] 许丽妹, 吴海燕, 林海丽, 吉顺妮, 陈春汝, 符娇娇, 陈忠仁, 吴小妹. 机械通气患者呼吸机相关性肺炎的风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 447-451.
[8] 沈月秋, 曹梦琳, 许梅杰, 吴敏丹, 吴凯怡, 陆琳娟. 基于可解释机器学习预测慢性阻塞性肺疾病患者急性加重风险研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 380-384.
[9] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[10] 希龙夫, 薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 166-171.
[11] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[12] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[13] 夏炎, 朱帅帅, 张岩松. 基于生物信息学和机器学习探究前庭神经鞘瘤生物标志物在免疫微环境中的相关功能[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 171-179.
[14] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?