切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2025, Vol. 18 ›› Issue (03) : 166 -171. doi: 10.3877/cma.j.issn.1674-6899.2025.03.008

综述

人工智能在肝胆胰肿瘤诊治中应用与进展
希龙夫, 薛荣泉()   
  1. 010010 呼和浩特,内蒙古自治区人民医院肝胆胰脾外科
  • 收稿日期:2025-04-24 出版日期:2025-06-30
  • 通信作者: 薛荣泉

Application and progress of artificial intelligence in diagnosis and treatment of hepatobiliary and pancreatic tumors

Longfu Xi, Rongquan Xue()   

  1. Department of Hepatobiliary, Pancreatic and Spleen Surgery, Inner Mongolia Autonomous Region People′s Hospital, Hohhot 010010, China
  • Received:2025-04-24 Published:2025-06-30
  • Corresponding author: Rongquan Xue
引用本文:

希龙夫, 薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 166-171.

Longfu Xi, Rongquan Xue. Application and progress of artificial intelligence in diagnosis and treatment of hepatobiliary and pancreatic tumors[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(03): 166-171.

科技与技术急速发展的时代,人工智能(artificial intelligence, AI)与医学之间的关系日益密切,二者的融合极大推动了疾病诊疗水平的快速发展。AI技术目前已被应用于临床疾病的诊疗中,其在肝胆胰外科中的应用正在快速发展,为肝胆胰肿瘤的诊断、治疗方案的决策、外科手术的安全性及精准、肿瘤病理、治疗预后、外科医师的仿真训练等方面提供了至关重要的技术支持与保障。本文就AI在肝胆胰肿瘤治疗中的应用及研究进展进行综述,以期为实现肝胆胰肿瘤的精准微创诊治提供新方向。

In the era of rapid development of science and technology, the relationship between artificial intelligence (AI) and medicine has become increasingly close, and the integration of the above two has greatly promoted the rapid development of disease diagnosis and treatment. At present, AI has been applied in the diagnosis and treatment of clinical diseases, and its application in hepatobiliary and pancreatic surgery is developing rapidly, providing vital technical support and guarantee for the diagnosis of hepatobiliary and pancreatic tumors, treatment plan decision-making, surgical safety and accuracy, tumor pathology, treatment prognosis, and simulation training of surgeons. This article reviews the application and research progress of AI in the treatment of hepatobiliary and pancreatic tumors, in order to provide a new direction for the accurate and minimally invasive diagnosis and treatment of hepatobiliary and pancreatic tumors.

1
方驰华,田捷,张鹏,等. 数字医学技术在肝胆胰外科的应用:20年历史回顾与未来展望[J].中华外科杂志2021, 59(10):807-811.
2
Nagtegaal ID, Odze RD, Klimstra D, et al. WHO classification of tumours editorial board;the 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188.
3
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154.
4
Xia TY, Zhou ZH, Meng XP, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J]. Radiology, 2023, 307(4): e222729.
5
Takamoto T, Ban D, Nara S, et al. Automated three-dimensional liver reconstruction with artificial intelligence for virtual hepatectomy[J]. J Gastrointest Surg, 2022, 26(10): 2119-2127.
6
Lim KC, Chow PK, Allen JC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria[J]. Ann Surg, 2011, 254(1): 108-113.
7
Chu T, Zhao C, Zhang J, et al. Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma[J]. Ann Surg Oncol, 2022, 29(11): 6774-6783.
8
Sarcognato S, Sacchi D, Fassan M, et al. Cholangiocarcinoma[J]. Pathologica, 2021, 113(3): 158-169.
9
Cheng M, Zhang H, Guo Y,et al. Comparison of MRI and CT based deep learning radiomics analyses and their combination for diagnosing intrahepatic cholangiocarcinoma[J]. Sci Rep, 2025, 15(1): 9629.
10
Xiang F, Meng QT, Deng JJ, et al., A deep learning model based on contrast-enhanced computed tomography for differential diagnosis of gallbladder carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2024, 23(4): 376-384.
11
Egawa S, Toma H, Ohigashi H, et al. Japan Pancreatic Cancer Registry; 30th year anniversary: Japan Pancreas Society[J]. Pancreas, 2012, 41(7): 985-992.
12
Maguchi H. The roles of endoscopic ultrasonography in the diagnosis of pancreatic tumors[J]. J Hepatobiliary Pancreat Surg, 2004, 11(1): 1-3.
13
Tonozuka R, Itoi T, Nagata N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study[J]. J Hepatobiliary Pancreat Sci, 2021, 28(1): 95-104.
14
Akmese OF. Data privacy-aware machine learning approach in pancreatic cancer diagnosis[J]. BMC Med Inform Decis Mak, 2024, 24(1): 248.
15
Cao K, Xia Y, Yao J, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29(12): 3033-3043.
16
Ratti F, Serenari M, Corallino D, et al., Augmented reality improving intraoperative navigation in minimally invasive liver surgery: an interplay between 3D reconstruction and indocyanine green[J]. Updates Surg, 2024, 76(7): 2701-2708.
17
许阳,成剑文,王鹏翔,等. 腹腔镜下肝脏手术增强现实三维影像导航平台的构建与应用[J]. 中国临床医学2023, 30(1): 97-103.
18
Yang L, Chen Y, Ling S, et al. Research progress on the application of optical coherence tomography in the field of oncology[J]. Front Oncol, 2022, 12: 953934.
19
Scholler J, Groux K, Goureau O, et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids[J]. Light Sci Appl, 2020, 9: 140.
20
Pavone M, Innocenzi C, Carles E, et al. Cutting edge microscopic intraoperative tissue assessment for guidance in oncologic surgery: a systematic review of the role of optical coherence tomography[J]. Ann Surg Oncol, 2025, 32(3): 2191-2205.
21
Kawaguchi Y, Hasegawa K, Tzeng CD, et al. Performance of a modified three-level classification in stratifying open liver resection procedures in terms of complexity and postoperative morbidity[J]. Br J Surg, 2020, 107(3): 258-267.
22
Laino ME, Fiz F, Morandini P, et al. A virtual biopsy of liver parenchyma to predict the outcome of liver resection[J]. Updates Surg, 2023, 75(6): 1519-1531.
23
Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
24
Wang Y, Ge H, Hu M, et al. Histological tumor micronecrosis in resected specimens after R0 hepatectomy for hepatocellular carcinomas is a factor in determining adjuvant TACE: a retrospective propensity score-matched study[J]. Int J Surg, 2022, 105: 106852.
25
Sun X, Wang Y, Ge H, et al. Development and validation of novel models including tumor micronecrosis for predicting the postoperative survival of patients with hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2023, 10: 1181-1194.
26
Deng B, Tian Y, Zhang Q, et al. NecroGlobalGCN: integrating micronecrosis information in HCC prognosis prediction via graph convolutional neural networks[J]. Comput Methods Programs Biomed, 2024, 257: 108435.
27
Ohri N, Dawson LA, Krishnan S, et al. Radiotherapy for hepatocellular carcinoma: new indications and directions for future study[J]. J Natl Cancer Inst, 2016, 108(9).
28
Sun J, Huang L, Liu Y. Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients[J]. J Gene Med, 2024, 26(9):e3732.
29
Lai Q, De Stefano C, Emond J, et al. Development and validation of an artificial intelligence model for predicting post-transplant hepatocellular cancer recurrence[J]. Cancer Commun (Lond), 2023. 43(12):1381-1385.
30
Huang L, Li J, Zhu S, et al. Machine learning-based prognostic prediction and surgical guidance for intrahepatic cholangiocarcinoma[J]. Biosci Trends, 2025,18(6): 545-554.
31
Chen B, Mao Y, Li J, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study[J]. Comput Biol Med, 2023, 167: 107612.
32
Lee KS, Jang JY, Yu YD, et al. Usefulness of artificial intelligence for predicting recurrence following surgery for pancreatic cancer: Retrospective cohort study[J]. Int J Surg, 2021, 93: 106050.
33
Hu K, Bian C, Yu J, et al. Construction of a combined prognostic model for pancreatic ductal adenocarcinoma based on deep learning and digital pathology images[J]. BMC Gastroenterol, 2024, 24(1): 387.
34
Li B, Wang B, Zhuang P, et al. A novel staging system derived from natural language processing of pathology reports to predict prognostic outcomes of pancreatic cancer: a retrospective cohort study[J]. Int J Surg, 2023, 109(11): 3476-3489.
35
Abou-Alfa GK, Blanc JF, Miles S, et al., Phase Ⅱ study of first-line trebananib plus sorafenib in patients with advanced hepatocellular carcinoma[J]. Oncologist, 2017, 22(7): 780-e65.
36
Li Y, Xiong J, Hu Z, et al. Denoised recurrence label-based deep learning for prediction of postoperative recurrence risk and sorafenib response in HCC[J]. BMC Med, 2025, 23(1): 162.
37
Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172.
38
Chen B, Garmire L, Calvisi DF, et al. Harnessing big 'omics’ data and AI for drug discovery in hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 238-251.
39
Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391(10126): 1163-1173.
40
Bo Z, Chen B, Zhao Z, et al. Prediction of response to lenvatinib monotherapy for unresectable hepatocellular carcinoma by machine learning radiomics: a multicenter cohort study[J]. Clin Cancer Res, 2023, 29(9): 1730-1740.
41
Von Hoff DD, Ervin T, Arena FP, et al., Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369(18): 1691-1703.
42
Watson MD, Baimas-George MR, Murphy KJ, et al. Pure and hybrid deep learning models can predict pathologic tumor response to neoadjuvant therapy in pancreatic adenocarcinoma: a pilot study[J]. Am Surg, 2021. 87(12): 1901-1909.
43
Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance[J]. Cold Spring Harb Perspect Med, 2014, 4(6).
44
Dong B, Zhang Y, Gao H, et al. Machine learning developed a MYC expression feature-based signature for predicting prognosis and chemoresistance in pancreatic adenocarcinoma[J]. Biochem Genet, 2024, 62(5): 4191-4214.
45
Gong M, Jiang Y, Sun Y, et al. Knowledge domain and frontier trends of artificial intelligence applied in solid organ transplantation: a visualization analysis[J]. Int J Med Inform, 2025, 195:105782.
46
Jaremko JL, Azar M, Bromwich R, et al. Canadian association of radiologists white paper on ethical and legal issues related to artificial intelligence in radiology[J]. Can Assoc Radiol J, 2019, 70(2): 107-118.
47
Tozsin A, Ucmak H, Soyturk S, et al. The role of artificial intelligence in medical education: a systematic review[J]. Surg Innov, 2024, 31(4): 415-423.
48
Xu Y, Jiang Z, Ting, DSW, et al. Medical education and physician training in the era of artificial intelligence[J]. Singapore Med J, 2024, 65(3): 159-166.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 刘芳, 张展, 刘慧, 方玲, 王爱珍, 丁豆豆, 崔苗, 刘百灵, 王洁. 儿童原发性心脏肿瘤超声表现及预后的单中心回顾分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 470-476.
[3] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[4] 孙海涛, 姬阆, 郝少龙, 胡阳, 孙浩, 纪宇, 聂方, 韩威. BANCR在胰腺癌组织及外周血中的表达及临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 496-500.
[5] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[6] 王小军, 蔡瑜, 安艳新, 刘斌, 冯永安. 完全腹腔镜远端胃癌根治术治疗局部进展期胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 509-512.
[7] 孔宪诚, 沙粒, 杜磊, 刘岗. 以卫式线引导的保留邓氏筋膜全直肠系膜切除术的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 523-526.
[8] 袁德玺, 徐海霞, 华秀丽, 申青. 适形保肛术对低位直肠癌患者术后肛门功能的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 527-530.
[9] 杨敏, 辛林璞, 杜峻峰. 三精准管理方案对直肠癌造口术后造口并发症的预防效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 531-534.
[10] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[11] 肖燕玲, 杜升兰, 杨春梅, 许政文, 王玫. 正中切口在腹腔镜直肠癌根治术预防性回肠造口中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 539-542.
[12] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[13] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[14] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[15] 卫星彤, 李昊昌, 赵欣. 超声造影在鉴别诊断原发性肝癌类型上的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 392-396.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?