1 |
方驰华,田捷,张鹏,等. 数字医学技术在肝胆胰外科的应用:20年历史回顾与未来展望[J].中华外科杂志,2021, 59(10):807-811.
|
2 |
Nagtegaal ID, Odze RD, Klimstra D, et al. WHO classification of tumours editorial board;the 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188.
|
3 |
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154.
|
4 |
Xia TY, Zhou ZH, Meng XP, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J]. Radiology, 2023, 307(4): e222729.
|
5 |
Takamoto T, Ban D, Nara S, et al. Automated three-dimensional liver reconstruction with artificial intelligence for virtual hepatectomy[J]. J Gastrointest Surg, 2022, 26(10): 2119-2127.
|
6 |
Lim KC, Chow PK, Allen JC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria[J]. Ann Surg, 2011, 254(1): 108-113.
|
7 |
Chu T, Zhao C, Zhang J, et al. Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma[J]. Ann Surg Oncol, 2022, 29(11): 6774-6783.
|
8 |
Sarcognato S, Sacchi D, Fassan M, et al. Cholangiocarcinoma[J]. Pathologica, 2021, 113(3): 158-169.
|
9 |
Cheng M, Zhang H, Guo Y,et al. Comparison of MRI and CT based deep learning radiomics analyses and their combination for diagnosing intrahepatic cholangiocarcinoma[J]. Sci Rep, 2025, 15(1): 9629.
|
10 |
Xiang F, Meng QT, Deng JJ, et al., A deep learning model based on contrast-enhanced computed tomography for differential diagnosis of gallbladder carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2024, 23(4): 376-384.
|
11 |
Egawa S, Toma H, Ohigashi H, et al. Japan Pancreatic Cancer Registry; 30th year anniversary: Japan Pancreas Society[J]. Pancreas, 2012, 41(7): 985-992.
|
12 |
Maguchi H. The roles of endoscopic ultrasonography in the diagnosis of pancreatic tumors[J]. J Hepatobiliary Pancreat Surg, 2004, 11(1): 1-3.
|
13 |
Tonozuka R, Itoi T, Nagata N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study[J]. J Hepatobiliary Pancreat Sci, 2021, 28(1): 95-104.
|
14 |
Akmese OF. Data privacy-aware machine learning approach in pancreatic cancer diagnosis[J]. BMC Med Inform Decis Mak, 2024, 24(1): 248.
|
15 |
Cao K, Xia Y, Yao J, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29(12): 3033-3043.
|
16 |
Ratti F, Serenari M, Corallino D, et al., Augmented reality improving intraoperative navigation in minimally invasive liver surgery: an interplay between 3D reconstruction and indocyanine green[J]. Updates Surg, 2024, 76(7): 2701-2708.
|
17 |
许阳,成剑文,王鹏翔,等. 腹腔镜下肝脏手术增强现实三维影像导航平台的构建与应用[J]. 中国临床医学,2023, 30(1): 97-103.
|
18 |
Yang L, Chen Y, Ling S, et al. Research progress on the application of optical coherence tomography in the field of oncology[J]. Front Oncol, 2022, 12: 953934.
|
19 |
Scholler J, Groux K, Goureau O, et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids[J]. Light Sci Appl, 2020, 9: 140.
|
20 |
Pavone M, Innocenzi C, Carles E, et al. Cutting edge microscopic intraoperative tissue assessment for guidance in oncologic surgery: a systematic review of the role of optical coherence tomography[J]. Ann Surg Oncol, 2025, 32(3): 2191-2205.
|
21 |
Kawaguchi Y, Hasegawa K, Tzeng CD, et al. Performance of a modified three-level classification in stratifying open liver resection procedures in terms of complexity and postoperative morbidity[J]. Br J Surg, 2020, 107(3): 258-267.
|
22 |
Laino ME, Fiz F, Morandini P, et al. A virtual biopsy of liver parenchyma to predict the outcome of liver resection[J]. Updates Surg, 2023, 75(6): 1519-1531.
|
23 |
Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
|
24 |
Wang Y, Ge H, Hu M, et al. Histological tumor micronecrosis in resected specimens after R0 hepatectomy for hepatocellular carcinomas is a factor in determining adjuvant TACE: a retrospective propensity score-matched study[J]. Int J Surg, 2022, 105: 106852.
|
25 |
Sun X, Wang Y, Ge H, et al. Development and validation of novel models including tumor micronecrosis for predicting the postoperative survival of patients with hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2023, 10: 1181-1194.
|
26 |
Deng B, Tian Y, Zhang Q, et al. NecroGlobalGCN: integrating micronecrosis information in HCC prognosis prediction via graph convolutional neural networks[J]. Comput Methods Programs Biomed, 2024, 257: 108435.
|
27 |
Ohri N, Dawson LA, Krishnan S, et al. Radiotherapy for hepatocellular carcinoma: new indications and directions for future study[J]. J Natl Cancer Inst, 2016, 108(9).
|
28 |
Sun J, Huang L, Liu Y. Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients[J]. J Gene Med, 2024, 26(9):e3732.
|
29 |
Lai Q, De Stefano C, Emond J, et al. Development and validation of an artificial intelligence model for predicting post-transplant hepatocellular cancer recurrence[J]. Cancer Commun (Lond), 2023. 43(12):1381-1385.
|
30 |
Huang L, Li J, Zhu S, et al. Machine learning-based prognostic prediction and surgical guidance for intrahepatic cholangiocarcinoma[J]. Biosci Trends, 2025,18(6): 545-554.
|
31 |
Chen B, Mao Y, Li J, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study[J]. Comput Biol Med, 2023, 167: 107612.
|
32 |
Lee KS, Jang JY, Yu YD, et al. Usefulness of artificial intelligence for predicting recurrence following surgery for pancreatic cancer: Retrospective cohort study[J]. Int J Surg, 2021, 93: 106050.
|
33 |
Hu K, Bian C, Yu J, et al. Construction of a combined prognostic model for pancreatic ductal adenocarcinoma based on deep learning and digital pathology images[J]. BMC Gastroenterol, 2024, 24(1): 387.
|
34 |
Li B, Wang B, Zhuang P, et al. A novel staging system derived from natural language processing of pathology reports to predict prognostic outcomes of pancreatic cancer: a retrospective cohort study[J]. Int J Surg, 2023, 109(11): 3476-3489.
|
35 |
Abou-Alfa GK, Blanc JF, Miles S, et al., Phase Ⅱ study of first-line trebananib plus sorafenib in patients with advanced hepatocellular carcinoma[J]. Oncologist, 2017, 22(7): 780-e65.
|
36 |
Li Y, Xiong J, Hu Z, et al. Denoised recurrence label-based deep learning for prediction of postoperative recurrence risk and sorafenib response in HCC[J]. BMC Med, 2025, 23(1): 162.
|
37 |
Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172.
|
38 |
Chen B, Garmire L, Calvisi DF, et al. Harnessing big 'omics’ data and AI for drug discovery in hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 238-251.
|
39 |
Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391(10126): 1163-1173.
|
40 |
Bo Z, Chen B, Zhao Z, et al. Prediction of response to lenvatinib monotherapy for unresectable hepatocellular carcinoma by machine learning radiomics: a multicenter cohort study[J]. Clin Cancer Res, 2023, 29(9): 1730-1740.
|
41 |
Von Hoff DD, Ervin T, Arena FP, et al., Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369(18): 1691-1703.
|
42 |
Watson MD, Baimas-George MR, Murphy KJ, et al. Pure and hybrid deep learning models can predict pathologic tumor response to neoadjuvant therapy in pancreatic adenocarcinoma: a pilot study[J]. Am Surg, 2021. 87(12): 1901-1909.
|
43 |
Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance[J]. Cold Spring Harb Perspect Med, 2014, 4(6).
|
44 |
Dong B, Zhang Y, Gao H, et al. Machine learning developed a MYC expression feature-based signature for predicting prognosis and chemoresistance in pancreatic adenocarcinoma[J]. Biochem Genet, 2024, 62(5): 4191-4214.
|
45 |
Gong M, Jiang Y, Sun Y, et al. Knowledge domain and frontier trends of artificial intelligence applied in solid organ transplantation: a visualization analysis[J]. Int J Med Inform, 2025, 195:105782.
|
46 |
Jaremko JL, Azar M, Bromwich R, et al. Canadian association of radiologists white paper on ethical and legal issues related to artificial intelligence in radiology[J]. Can Assoc Radiol J, 2019, 70(2): 107-118.
|
47 |
Tozsin A, Ucmak H, Soyturk S, et al. The role of artificial intelligence in medical education: a systematic review[J]. Surg Innov, 2024, 31(4): 415-423.
|
48 |
Xu Y, Jiang Z, Ting, DSW, et al. Medical education and physician training in the era of artificial intelligence[J]. Singapore Med J, 2024, 65(3): 159-166.
|