切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2016, Vol. 09 ›› Issue (05): 268 -272. doi: 10.3877/cma.j.issn.1674-6899.2016.05.003

所属专题: 机器人手术 文献资源库

论著 上一篇    下一篇

机器人保留脾血管胰体尾切除术治疗儿童胰岛素瘤报道
胡明根 1, 肖元宏 2, 宋栋达 1, 赵国栋 1, 吴振宇 1, 王政 2, 李浩宇 2, 刘荣 1 , ( )   
  1. 1. 100853 北京,解放军总医院肝胆外二科
    2. 100853 北京,解放军总医院小儿外科
  • 收稿日期:2016-09-27 出版日期:2016-10-30
  • 通信作者: 刘荣

First report of robotic spleen-preserving distal pancreatectomy for children suffered from insulinoma

Minggen Hu 1, Yuanhong Xiao 2, Dongda Song 1, Guodong Zhao 1, Zhenyu Wu 1, Zheng Wang 2, Haoyu Li 2, Rong Liu 1 , ( )   

  1. 1. Department of 2nd Hepatobiliary Department; Chinese PLA General Hospital, Beijing 100853, China
    2. Department of Pediatric Surgery, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2016-09-27 Published:2016-10-30
  • Corresponding author: Rong Liu
  • About author:
    Corresponding author: Liu Rong, Email:
目的

报道国内外首例儿童机器人保留脾血管胰体尾切除术,探讨该方法治疗儿童胰腺良性疾病的可行性和安全性。

方法

2016年7月收治1例儿童胰体尾胰岛素瘤病例,患儿女性,9岁,体质量24 kg,身高1.20 m。行机器人保留脾血管的胰体尾切除术。机器人操作时采用4孔法:自脐下缘微小切口置入气腹针建立气腹后缝合该切口,观察孔位于下腹正中脐下5 cm(10 mm),1臂位于左侧平脐水平与腋前线的交点(8 mm),2臂位于右侧脐水平下2 cm与腋前线交点(8 mm),辅助孔位于左侧锁骨中线脐水平下3 cm(12 mm)。用超声刀切开胃结肠韧带,显露胰腺,腹腔镜超声探查证实病灶位于胰尾,直径约2 cm;切断脾结肠韧带,结肠脾曲向下游离;用电凝沿胰腺下缘分离胰后间隙,向脾门进行,将胰尾与脾脏之间的粘连分开,于胰腺后方分离出脾静脉,胰腺上缘分离出脾动脉,逐一分离夹闭或缝合动静脉与胰腺之间的分支,使胰尾完全游离,距离肿瘤右侧约1 cm以直线切割闭合器蓝色钉仓切断胰体尾,胰腺断端以4-0 Prolene线连续缝合。标本装入一次性标本袋自辅助孔取出,胰腺断端放置乳胶引流管1根自腹壁右侧孔引出。

结果

手术时间155 min,气腹时间120 min,术中出血量约10 ml,围手术期恢复顺利,无胰瘘、出血及腹腔感染等并发症。术后血糖恢复正常,空腹胰岛素及血糖比值小于0.4,胰腺MRI平扫及增强扫描显示胰腺无肿瘤残留。

结论

机器人与传统腹腔镜相比,具有三维视野、操作灵活等优点,该病例的成功经验初步显示机器人保留脾血管的胰体尾切除术治疗儿童胰岛素瘤是安全、可行的。

Objective

To report the first case of robotic-assisted splenic vascular preserving distal pancreatectomy for child patient in China, and to investigate the feasibility and safety of this surgical method in the treatment of children's benign pancreatic diseases.

Methods

A 9-year-old female patient (24 kg in weight and 1.20 m in height) diagnosed with insulinoma in the tail of pancreas was hospitalized in Jul. 2016 and was treated with robotic-assisted splenic vascular preserving distal pancreatectomy. The pneumoperitoneum was established with Veress needle through a minor incision in the inferior edge of umbilicus and the incision was closed whereafter. The robotic-assisted procedure was performed with four ports: a 10 mm optical port in the ventral midline 5 cm blow the umbilicus, an 8 mm port for the first robotic arm in the left anterior axillary line at the level of umbilicus, an 8 mm port for the second robotic arm in the right anterior axillary line 2 cm below the level of umbilicus, a 12 mm assistant port in the left midclavicular line 3 cm below the level of umbilicus. The gastrocolic ligament was divided by ultrasonic scalpel to expose the pancreas. The tumor was identified in the tail of pancreas using laparoscopic ultrasound, with a diameter of 2 cm. Then the splenocolic ligament was divided and splenic flexure was dissected downwards. The pancreas was separated from the retroperitoneal tissues with robotic hook cautery along the inferior border of pancreas towards the splenic hilum.After division of adhesion between the tail of pancreas and spleen, the splenic vein and artery were dissected off the posterior of pancreas and superior edge of pancreas, respectively. The branches of splenic vessels into the pancreas were progressively ligated or sutured to free the tail of pancreas completely. Subsequently, the distal pancreas was transected using laparoscopic linear stapler (Echelon 60, blue cartridge, Ethicon Endo-Surgery, Cincinnati, OH, United States) 1 cm from the right side of the tumor. The cut edge was continuously sutured using 4-0 Prolene. The resected specimen was transferred into the endo-bag and removed through the assistant port. A rubber drainage tube along the cut edge of pancreas was brought out through a stab incision on the right side of abdominal wall.

Results

The operative time was 155 minutes and the pneumoperitoneum time was 120 minutes. The estimated blood loss was 10 ml. The postoperative recovery was smoothly, without complications like pancreatic fistula, bleeding and infection, etc. The blood glucose was restored normal with a fasting insulin to glucose ratio less than 0.4. Unenhanced and contrast-enhanced MRI showed no sign of tumor residue.

Conclusions

Compared with traditional laparoscopic procedure, robotic-assisted surgery has advantages including three-dimensional vision and flexible manipulation, etc. The successful operation of this case initially ascertained the safety and feasibility of robotic-assisted spleen-preserving distal pancreatectomy in the treatment of insulinomas in children.

图1 CT增强扫描
图2 MRI动态增强扫描
图3 Trocar的分布
图4 4孔法Trocar切口愈合情况
图5 EC60蓝色钉仓直线切割闭合器行胰体尾的切除
1
James A, O′Neill, Arnold G, et al. Pediatric Surgery [M].5版,纽约:莫斯比,1998: 1539.
2
刘荣,赵之明. 正确认识"达芬奇"手术机器人在肝胆胰外科中的作用[J/CD]. 中华腔镜外科杂志:电子版,2012, 5 (2): 1-3.
3
黄格元,蓝传亮,刘雪来,等. 达芬奇机器人在小儿外科手术中的应用(附20例报告)[J]. 中国微创外科杂志,2013, 13 (1): 4-8.
4
Stauffer JA, Asbun HJ. Minimally Invasive Pancreatic Surgery [J]. Seminars in Oncology, 2015, 42 (1): 123-133.
5
Chen Y, Yan J, Yuan Z, et al. A meta-analysis of robotic-assisted pancreatectomy versus laparoscopic and open pancreatectomy [J]. Saudi Medical Journal, 2013, 34 (12): 1229-1236.
6
Duran H, Ielpo B, Caruso R, et al. Does robotic distal pancreatectomy surgery offer similar results as laparoscopic and open approach? a comparative study from a single medical center [J]. International Journal of Medical Robotics & Computer Assisted Surgery, 2014, 10 (3): 280-285.
7
Lee SH, Kang CM, Hwang HK, et al. Minimally invasive RAMPS in well-selected left-sided pancreatic cancer within Yonsei criteria: long-term (> median 3 years) oncologic outcomes [J]. Surgical Endoscopy, 2014, 28 (10): 2848-2855.
8
Parisi A, Desiderio J, Cirocchi R, et al. Road accident due to a pancreatic insulinoma: a case report [J]. Medicine, 2015, 94 (12): 537.
9
施昱晟,彭承宏,詹茜,等.机器人手术系统行胰腺钩突肿瘤切除术疗效评价(附6例报告) [J]. 中国实用外科杂志,2015 (3): 308-312.
10
秦凯,金佳斌,施源,等. 胰头部实性假乳头肿瘤的机器人微创治疗(附12例报告) [J]. 外科理论与实,2015, 20 (6): 479-484.
[1] 杨娇, 李静雅, 马宁, 孙妍, 张红菊, 刘国文, 郑淋, 薛丽. 右肺动脉异常起源于升主动脉的超声心动图漏误诊分析[J]. 中华医学超声杂志(电子版), 2021, 18(07): 691-695.
[2] 钟小玲, 舒敏. 儿童屎肠球菌脑膜炎的诊断和治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 387-392.
[3] 杨秋萍, 覃肇源, 董慧敏, 肖昕, 石聪聪, 郝虎. 谷胱甘肽合成酶缺乏症并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 425-430.
[4] 蓝国锋, 史学凯, 冯金明, 何潇, 邱其周, 黄景雄. 基于移动医疗APP营养管理干预策略对早产儿出院后营养状况及体格发育的作用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 475-481.
[5] 周红玉, 李羽. 右美托咪定在儿童患者麻醉中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 482-487.
[6] 周佩佩, 吴亚楠, 王莹, 王然. 气管支气管异物致患儿下呼吸道感染的危险因素[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 276-280.
[7] 廖莹, 邢向辉. 南京市视力障碍儿童患龋状况、龋活跃性和口腔卫生习惯调查及相关性分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 222-227.
[8] 杜文亮, 张宏伟, 曹慧, 孙邡, 张翔, 寇明智, 李梦阳, 朱肖, 孟晓婉. 加速康复外科在腹腔镜治疗小儿嵌顿性腹股沟斜疝的应用[J]. 中华疝和腹壁外科杂志(电子版), 2021, 15(04): 352-356.
[9] 温超超, 卢燕鸣. 基于SAT技术分析不同年龄段儿童肺炎支原体感染的临床分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 442-446.
[10] 刘利梅, 徐卫华, 饶晓红. 血清颗粒蛋白前体、C反应蛋白在儿童支原体肺炎中检测的临床意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 453-455.
[11] 辜德明, 周家仍, 罗旋, 梁振明, 雷智贤. 细胞因子IL-6、TNF-α评估小儿支原体肺炎病情进展和预后[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 505-507.
[12] 周辉, 仲智勇, 李索林, 时保军, 杨晓锋. 超声刀联合微波止血分离器在腹腔镜小儿肝脏肿物切除术中的应用[J]. 中华腔镜外科杂志(电子版), 2021, 14(04): 226-230.
[13] 汤庆超, 王锡山. 浅谈应用达芬奇机器人手术平台开展直肠癌NOSES手术的优越性和局限性[J]. 中华结直肠疾病电子杂志, 2021, 10(04): 343-350.
[14] 陈立华, 孙恺, 陈文锦, 夏勇, 张洪钿, 徐如祥. 儿童髓母细胞瘤的风险分层治疗[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 242-246.
[15] 王静, 韩玉玲, 张赟, 马香. 济南地区儿童重症肺炎病原学的回顾性分析[J]. 中华临床医师杂志(电子版), 2021, 15(04): 244-248.
阅读次数
全文


摘要