1 |
Maier-Hein L, Vedula SS, Speidel S, et al. Surgical data science for next-generation interventions[J]. Nat Biomed Eng, 2017, 1(9):691-696.
|
2 |
胡明根,陈况,马奔,等. 微创外科时代肝胆外科医师教学培养模式的探讨[J/CD]. 中华腔镜外科杂志(电子版), 2020, 13(2):65-68.
|
3 |
Bailey RW, Imbembo AL, Zucker KA. Establishment of a laparoscopic cholecystectomy training program[J]. Am Surg, 1991, 57(4):231-236.
|
4 |
Madion MP, Kastenmeier A, Goldblatt MI, et al. Robotic surgery training curricula: prevalence, perceptions, and educational experiences in general surgery residency programs[J]. Surg Endosc, 2022, 36(9):6638-6646.
|
5 |
Bjerrum F, Thomsen ASS, Nayahangan LJ, et al. Surgical simulation: current practices and future perspectives for technical skills training[J]. Med Teach, 2018, 40(7):668-675.
|
6 |
Cook DA, Hatala R, Brydges R, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis[J]. JAMA, 2011, 306(9):978-988.
|
7 |
Chen G, Jin S, Xia Q, et al. Insight into the history and trends of surgical simulation training in education: a bibliometric analysis[J]. Int J Surg, 2023, 109(8):2204-2213.
|
8 |
Costello DM, Huntington I, Burke G, et al. A review of simulation training and new 3D computer-generated synthetic organs for robotic surgery education[J]. J Robot Surg, 2022, 16(4):749-763.
|
9 |
Aydin A, Raison N, Khan MS, et al. Simulation-based training and assessment in urological surgery[J]. Nat Rev Urol, 2016, 13(9):503-519.
|
10 |
Chen IA, Ghazi A, Sridhar A, et al. Evolving robotic surgery training and improving patient safety, with the integration of novel technologies[J]. World J Urol, 2021, 39(8):2883-2893.
|
11 |
Zheng, S. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. in computer vision and pattern recognition (2021).
|
12 |
Shvets A, Rakhlin A, Kalinin AA, et al. Automatic instrument segmentation in robot-assisted surgery using deep learning[C]. 2018.
|
13 |
Jin Y, Cheng K, Dou Q, et al. Incorporating temporal prior from motion flow for instrument segmentation in minimally invasive surgery video[C]//International Conference on Medical Image Computing and Computor-Assisted Intervention. Springer, Cham, 2019.
|
14 |
Ni ZL, Bian GB, Hou ZG, et al.Attention-guided lightweight network for real-time segmentation of robotic surgical instruments[C].IEEE, 2020.
|
15 |
Shen W, Wang Y, Liu M, et al. Branch aggregation attention network for robotic surgical instrument segmentation[J]. IEEE Trans Med Imaging, 2023, 42(11):3408-3419.
|
16 |
Madad Zadeh S, Francois T, Calvet L, et al. SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology[J]. Surg Endosc, 2020, 34(12):5377-5383.
|
17 |
Kumazu Y, Kobayashi N, Kitamura N, et al. Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy[J]. Sci Rep, 2021, 11(1):21198.
|
18 |
Koo B, Robu MR, Allam M, et al. Automatic, global registration in laparoscopic liver surgery[J]. Int J Comput Assist Radiol Surg, 2022, 17(1):167-176.
|
19 |
Une N, Kobayashi S, Kitaguchi D, et al. Intraoperative artificial intelligence system identifying liver vessels in laparoscopic liver resection: a retrospective experimental study[J]. Surg Endosc, 2024, 38(2):1088-1095.
|
20 |
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time vascular anatomical image navigation for laparoscopic surgery: experimental study[J]. Surg Endosc, 2022, 36(8):6105-6112.
|
21 |
Chen J, Li M, Han H, et al. Surgnet: self-supervised pretraining with semantic consistency for vessel and instrument segmentation in surgical images[J]. IEEE Trans Med Imaging, 2024, 43(4):1513-1525.
|
22 |
Bodenstedt S, Allan M, Agustinos A, et al.Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery[C]. 2018.
|
23 |
Allan, M.,Shvets, A.,Kurmann, T.,Zhang, Z. & Azizian, M. 2017 Robotic Instrument Segmentation Challenge. (2019).
|
24 |
Allan M, Kondo S, Bodenstedt S, et al. 2018 Robotic Scene Segmentation Challenge[C]. 2021.
|
25 |
Roβ T, Reinke A, Full PM, et al. Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge[J]. Med Image Anal, 2021, 70:101920.
|
26 |
Pfeiffer M, Funke I, Robu MR, et al. Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation[C]. 2019.
|
27 |
Jha D, Ali S, Emanuelsen K, et al. Kvasir-Instrument: diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy[C]//International Conference on Multimedia Modeling. Springer, Cham, 2021.
|
28 |
Maier-Hein L, Mersmann S, Kondermann D, et al. Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images[J]. Med Image Comput Comput Assist Interv, 2014, 17(Pt 2):438-445.
|
29 |
Bouget D, Benenson R, Omran M, et al. Detecting surgical tools by modelling local appearance and global shape[J]. IEEE Trans Med Imaging, 2015, 34(12):2603-2617.
|
30 |
Hong WY, Kao CL, Kuo YH, et al. CholecSeg8k: A semantic segmentation dataset for laparoscopic cholecystectomy based on cholec80[C]. 2020.
|
31 |
Grammatikopoulou, M.,et al. CaDIS: Cataract dataset for surgical RGB-image segmentation. 71 (2021).
|
32 |
Carstens M, Rinner FM, Bodenstedt S, et al. The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science[J]. Sci Data, 2023, 10(1):3.
|
33 |
Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg, 2022, 276(2):363-369.
|
34 |
Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning[J]. Ann Surg, 2022, 275(5):955-961.
|
35 |
Liu Y, Zhao S, Zhang G, et al. Multilevel effective surgical workflow recognition in robotic left lateral sectionectomy with deep learning: experimental research[J]. Int J Surg, 2023, 109(10):2941-2952.
|
36 |
Kiyasseh D, Ma R, Haque TF, et al. A vision transformer for decoding surgeon activity from surgical videos[J]. Nat Biomed Eng, 2023, 7(6):780-796.
|
37 |
Le Roy B, Ozgur E, Koo B, et al. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment (with video)[J]. J Visc Surg, 2019, 156(3):261-262.
|
38 |
Tukra S, Marcus HJ, Giannarou S. See-through vision with unsupervised scene occlusion reconstruction[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(7):3779-3790.
|