切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2025, Vol. 18 ›› Issue (05) : 286 -292. doi: 10.3877/cma.j.issn.1674-6899.2025.05.006

论著

磁导航胸腔镜早期肺癌全域定位方法应用分析
周鼎晔1, 魏可1, 刘鑫2, 何志成1, 许晶1, 郑佳男1, 凌一民2, 陈朱浩2, 吴卫兵1,()   
  1. 1210029 南京医科大学第一附属医院胸外科
    2215000 苏州朗开医疗技术有限公司研发部
  • 收稿日期:2025-10-12 出版日期:2025-10-30
  • 通信作者: 吴卫兵
  • 基金资助:
    江苏省人民医院临床提升工程(JSPH-MA-2023-8); 江苏省科技厅自然科学基金面上项目(BK20241985); 江苏省卫生健康委员会医学科研重点项目(ZD2022055)

Clinical evaluation of a magnetic navigation-based thoracoscopic global localization system for early lung cancer

Dingye Zhou1, Ke Wei1, Xin Liu2, Zhicheng He1, Jing Xu1, Jianan Zheng1, Yimin Ling2, Zhuhao Chen2, Weibing Wu1,()   

  1. 1Department of Thoracic Surgery, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, China
    2Research and Development Department, Lung Care Co., 215000, China
  • Received:2025-10-12 Published:2025-10-30
  • Corresponding author: Weibing Wu
引用本文:

周鼎晔, 魏可, 刘鑫, 何志成, 许晶, 郑佳男, 凌一民, 陈朱浩, 吴卫兵. 磁导航胸腔镜早期肺癌全域定位方法应用分析[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(05): 286-292.

Dingye Zhou, Ke Wei, Xin Liu, Zhicheng He, Jing Xu, Jianan Zheng, Yimin Ling, Zhuhao Chen, Weibing Wu. Clinical evaluation of a magnetic navigation-based thoracoscopic global localization system for early lung cancer[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(05): 286-292.

目的

研究开发一种基于磁导航、三维重建与骨性标记的胸腔镜下磁导航免穿刺全域定位系统(thoracoscopic magnetic navigation-guided puncture-free global localization,TMPGL)。

方法

术前采用平卧位或侧卧位CT并进行三维重建规划,选取第1肋胸骨肋关节、第4肋肋椎关节及第7肋肋椎关节作为骨性标记点;CT引导下穿刺定位也一并完成。术中利用磁导航探头触碰骨性标记校准空间坐标,引导至胸壁虚拟定位点并涂抹染料(亚甲蓝);膨肺后染料被动转印至脏层胸膜,最终实现肺结节定位。

结果

两种方法均成功完成肺结节定位。与穿刺定位相比,TMPGL在耗时、定位点偏差及定位点距结节距离上均显著更优(分别P<0.001,P=0.025,P=0.039)。穿刺定位过程中,9例(69.23%)出现不同程度的并发症,包括出血(53.80%)、气胸(30.77%)及胸壁血肿(23.08%),术后疼痛VAS评分中位数为3分,且3例(23.08%)患者定位后疼痛超过30分钟。TMPGL在两种体位组间的时间、定位点偏差、定位点距结节距离及印染扩散距离上无显著差异(均P>0.05)。

结论

本研究提出的免穿刺全域定位TMPGL在耗时、定位精度及距离结节的距离上均显著优于传统的穿刺定位。该方法能够实现对肺野外周、纵隔面及膈面等高风险区域结节的精准覆盖,为早期肺癌的精准诊疗提供了新的技术路径与理论依据。

Objective

To develop a novel thoracoscopic magnetic navigation-guided puncture-free global localization (TMPGL) technique based on magnetic navigation, 3D reconstruction, and bony landmarks.

Methods

Preoperative CT scanning was performed in the supine or lateral position, followed by 3D reconstruction to develop the strategy and plan the approach. The first rib-sternocostal joint, the fourth rib-vertebra joint, and the seventh rib-vertebra joint were selected as bony landmarks. CT-guided puncture localization was also performed. Intraoperatively, spatial coordinates were calibrated by touching the bony landmarks with a magnetic navigation probe, which then guided the probe to a virtual localization point on the chest wall where methylene blue dye was applied. After lung inflation, the dye was passively transferred to the visceral pleura, thereby achieving accurate localization of the lung nodule.

Results

Both CT-guided puncture localization and TMPGL were successfully performed. TMPGL demonstrated significant advantages over puncture localization in terms of time, deviation from the target point, and distance from the nodule (P<0.001, P=0.025, P=0.039, respectively). During puncture localization, 9 patients (69.23%) developed complications of varying degrees, including bleeding (53.80%), pneumothorax (30.77%), and chest wall hematoma (23.08%). The median postoperative pain visual analogue scale (VAS) score was 3, with 3 patients (23.08%) experiencing pain lasting more than 30 minutes. No significant differences were observed in terms of time, deviation, distance from the nodule, or dye spread distance between the two body position groups in TMPGL (all P>0.05).

Conclusion

The TMPGL technique significantly outperforms conventional puncture localization in terms of time, accuracy, and distance from the nodule. It enables precise targeting of peripheral, mediastinal, and diaphragmatic lung nodules-regions that are challenging for traditional puncture-based approaches-providing a safe, efficient strategy for accurate localization in early-stage lung cancer.

图1 TMPGL
图2 右上肺结节使用TMPGL
图3 免穿刺全域定位方法用于叶裂内结节
图4 纵隔面结节定位较为困难
图5 两组实际点位与理想点位比较
表1 患者及结节特征
表2 穿刺定位与印染定位的差异分析
表3 TMPGL使用不同体位胸部平扫CT进行配准的差异分析
1
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
2
张志军,李发君,任丽,等. 3D-CTBA辅助下胸腔镜扩大肺段切除术与肺亚段切除术治疗肺段边缘孤立性恶性结节的对照研究[J]. 中华解剖与临床杂志2025, 30(6): 395-401.
3
陈亮,王俊,吴卫兵,等. 胸腔镜精准肺段切除术技术流程和质量控制[J]. 中国胸心血管外科临床杂志2019, 26(1):21-28.
4
Oncology Society of Chinese Medical A. Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer (2024 edition)[J]. Zhonghua Yi Xue Za Zhi 2024, 104(34): 3175-3213.
5
Liu W, Lai H, Wang Z, et al. Does surgical margin affect recurrence and survival after sublobar pulmonary resection for lung cancer?[J]. Interact Cardiovasc Thorac Surg, 2022, 34(6): 1089-1094.
6
马永富,李云婧,张彤,等. 混合现实技术辅助下肺小结节精准定位切除[J/OL]. 中华腔镜外科杂志(电子版), 2019, 12(3): 179-181.
7
胡硕,王琦,魏海星,等. 三维导航免穿刺和穿刺定位行解剖性肺段切除术治疗肺结节的回顾性队列研究[J]. 中国胸心血管外科临床杂志2021, 28(10):1202-1206.
8
郑晓东,聂世威,周军正,等. 电磁导航支气管镜引导下肺结节定位和CT引导下Hook-wire穿刺定位在肺癌根治术中的应用效果及安全性比较[J]. 癌症进展2024, 22(16):1814-1817.
9
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial[J]. Lancet, 2022, 399(10335): 1607-1617.
10
Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage IA non-small-cell lung cancer[J]. N Engl J Med, 2023, 388(6): 489-498.
11
Chang ATC, Chan JWY, Siu ICH, et al. Lung nodule localization techniques in minimally invasive and video-assisted thoracoscopic surgery: a literature review[J]. 2023, 8.
12
Okumura T, Kondo H, Suzuki K, et al. Fluoroscopy-assisted thoracoscopic surgery after computed tomography-guided bronchoscopic barium marking[J]. Ann Thorac Surg, 2001, 71(2): 439-442.
13
Nishida T, Fujii Y, Akizuki K. Preoperative marking for peripheral pulmonary nodules in thoracoscopic surgery: a new method without piercing the pulmonary parenchyma[J]. Eur J Cardiothorac Surg, 2013, 44(6): 1131-1133.
14
Sortini D, Feo C, Maravegias K, et al. Intrathoracoscopic localization techniques. Review of literature[J]. Surg Endosc, 2006, 20(9): 1341-1347.
15
Kawada M, Okubo T, Poudel S, et al. A new marking technique for peripheral lung nodules avoiding pleural puncture: the intrathoracic stamping method[J]. Interact Cardiovasc Thorac Surg, 2013, 16(3): 381-383.
16
Sato M, Omasa M, Chen F, et al. Use of virtual assisted lung mapping (VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection[J]. J Thorac Cardiovasc Surg, 2014, 147(6): 1813-1819.
17
Thistlethwaite PA, Gower JR, Hernandez M, et al. Needle localization of small pulmonary nodules: lessons learned[J]. J Thorac Cardiovasc Surg, 2018, 155(5): 2140-2147.
18
Starnes SL, Wolujewicz M, Guitron J, et al. Radiotracer localization of nonpalpable pulmonary nodules: a single-center experience[J]. J Thorac Cardiovasc Surg, 2018, 156(5): 1986-1992.
19
Veronesi G, Bellomi M, Mulshine JL, et al. Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules[J]. Lung Cancer, 2008, 61(3): 340-349.
20
Sun SH, Gao J, Zeng XM, et al. Computed tomography-guided localization for lung nodules: methylene-blue versus coil localization[J]. Minim Invasive Ther Allied Technol, 2021, 30(4): 215-220.
[1] 徐蓓, 厉小梅, 王俐, 李雨薇, 徐晓玲, 陈卓. 原发性干燥综合征伴肺结节的临床特征[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 673-678.
[2] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[3] 王黔宇, 王云, 蒋婷, 杨芳, 廖江荣. 微波消融和冷冻消融治疗肺结节有效性及安全性对比分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 980-984.
[4] 蔡玉琳, 牛丹, 马丹, 王爽. 不同CT 重建算法对人工智能肺结节诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 931-935.
[5] 宋飞鹏, 王盈升, 许洪波, 吕发金. 不同既往癌症病史对PNI-GARS和Lung-RADS 诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 925-930.
[6] 钱春蕊, 周燕, 张晶, 蔡笃财, 门慧, 王松海, 黎莉, 邢龙. 高分辨率CT 与多层螺旋CT 在肺结节及早期肺癌中的应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 827-830.
[7] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[8] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[9] 孙志红, 庞红艳, 王睿. 呼出气体中VOCs联合CT征象诊断非实性肺结节的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 442-445.
[10] 解良婕, 王剑, 阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 242-246.
[11] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[12] 杨松林, 黄仕豪, 王丽珠, 李禧萌, 邹飞翔, 李坤炜, 梁明柱, 陈炳辉. 良性肺结节生长变化的影像学评价[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 344-350.
[13] 马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.
[14] 王嘉巍, 张广健, 杜昊楠, 余宸傲, 张佳. 混合现实技术在肺结节手术中的应用进展[J/OL]. 中华胸部外科电子杂志, 2024, 11(04): 254-259.
[15] 王宇, 张泽锴, 吴明胜, 王高祥, 孙效辉, 王君, 徐美青, 李田, 徐世斌, 解明然. 术后病理诊断为良性肺结节323例患者临床特征分析[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 167-174.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?