切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 251 -256. doi: 10.3877/cma.j.issn.1674-6899.2025.04.013

综述

手术机器人赋能腔镜外科:技术进展与未来趋势
黄曼维1,2, 杨镇泽1, 陈一博1,3, 宋佳龙1,3, 黄庆波1,()   
  1. 1100853 北京,中国人民解放军总医院泌尿外科医学部
    2261000 潍坊,山东第二医科大学临床医学院
    3300000 天津,南开大学医学部
  • 收稿日期:2025-05-15 出版日期:2025-08-30
  • 通信作者: 黄庆波

Surgical robots empower laparoscopic surgery: technological advances and future trends

Manwei Huang1,2, Zhenze Yang1, Yibo Chen1,3, Jialong Song1,3, Qingbo Huang1,()   

  1. 1Senior Department of Urology, Chinese PLA general Hospital, Beijing 100853, China
    2Clinical Medical School, Shandong Second Medical University, Weifang 261000, China
    3School of Medicine, Nankai University, Tianjin 300000, China
  • Received:2025-05-15 Published:2025-08-30
  • Corresponding author: Qingbo Huang
引用本文:

黄曼维, 杨镇泽, 陈一博, 宋佳龙, 黄庆波. 手术机器人赋能腔镜外科:技术进展与未来趋势[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(04): 251-256.

Manwei Huang, Zhenze Yang, Yibo Chen, Jialong Song, Qingbo Huang. Surgical robots empower laparoscopic surgery: technological advances and future trends[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(04): 251-256.

智能腹腔镜手术机器人技术在近十年取得了显著进展,本文综述了该领域的最新发展。临床研究表明,与传统腹腔镜手术相比,机器人辅助手术在减少术中出血量、缩短手术时间和住院时间等方面具有明显优势。商业化方面,虽然达芬奇系统仍占据主导地位,但市场竞争格局逐渐多元化。学术研究主要集中在开放平台、手术自动化、导航与术中成像、接触力传感与控制、单孔腹腔镜机器人及分离式手术机器人等领域。此外,MRI兼容机器人和细胞水平交互等新兴技术方向也展现出广阔前景。未来,腹腔镜手术机器人将向微型化、智能化和定制化方向发展,人机交互模式将随自主性水平提升而演变,但临床转化仍面临监管审批、开发流程和临床验证等多方面挑战。智能手术技术的创新必须始终以提高患者安全和手术效率为核心,才能真正实现其改变医学的潜力。

Significant progress has been made in intelligent laparoscopic surgical robotics over the past decade. This review summarizes the latest advancements in the field. Clinical studies have demonstrated that robot-assisted surgery offers distinct advantages over conventional laparoscopic techniques, including reduced intraoperative blood loss, shorter operative time, and decreased hospital stays. Commercially, although Intuitive Da Vinci Robotic Surgical Systems remains dominant, the competitive landscape is gradually diversifying. Academic research has primarily focused on open platforms, surgical automation, navigation and intraoperative imaging, force sensing and control, single-port laparoscopic robots, and modular surgical robotic systems. Additionally, emerging technologies such as MRI-compatible robots and cellular-level interaction show promising potential. In the future, laparoscopic surgical robots will evolve toward miniaturization, intelligence, and customization, while human-robot interaction modes will transform with increasing autonomy. However, clinical translation still faces challenges, including regulatory approval, development processes, and clinical validation. Innovations in intelligent surgical technology must remain patient-centered, prioritizing safety and efficiency, to fully realize their potential to transform medicine.

1
韩晓光,朱小龙,姜宇桢,等. 人工智能与机器人辅助医学发展研究[J]. 中国工程科学202325(5):43-54.
2
王帅彬,范来来,虞海峰,等. 机器人外科手术系统辅助下腹腔镜肾部分切除手术的研究进展[J]. 温州医科大学学报202353(9):768-774,封3.
3
熊波波,张劲松,李宁,等. 机器人在肾部分切除术中的应用进展[J]. 现代泌尿外科杂志202025(7):648-651.
4
Jurado A, Romeo A, Gueglio G, et al. Current trends in management of renal cell carcinoma with venous thrombus extension[J]. Curr Urol Rep, 2021, 22(4):23.
5
Gu L, Ma X, Gao Y, et al. Robotic versus open level Ⅰ-Ⅱ inferior vena cava thrombectomy: a matched group comparative analysis[J]. J Urol, 2017, 198(6):1241-1246.
6
Park J, Bak S, Song JY, et al. Robotic surgery in gynecology: the present and the future[J]. Obstet Gynecol Sci, 2023, 66(6):518-528.
7
刘旺敏,张墨. 混合现实技术用于机器人辅助腹腔镜肾部分切除术的研究进展[J]. 天津医药202250(4):444-448.
8
王楠,李立安,杨雯,等. 5G远程机器人妇科手术初步临床实践与评价[J/OL]. 中华腔镜外科杂志(电子版)202417(3):168-172.
9
马涛,刘志伟,安丰,等. 国产手术机器人与达芬奇手术机器人在肾肿瘤肾部分切除术中的应用效果比较[J]. 现代肿瘤医学202533(3):448-452.
10
刘洋,方芳,李莹,等. 国产单孔手术机器人辅助vNOTES治疗妇科良性疾病[J/OL]. 中华腔镜外科杂志(电子版)202417(4):234-238.
11
Picozzi P, Nocco U, Labate C,et al.Advances in robotic surgery: a review of new surgical platforms[J].Electronics, 2024, 13.
12
Brassetti A, Ragusa A, Tedesco F,et al.Robotic surgery in urology: history from PROBOT to HUGO TM[J].Sensors (14248220), 2023, 23(16).
13
Kaštelan ŽKneževic N, Hudolin T, et al. Extraperitoneal radical prostatectomy with the Senhance Surgical System robotic platform[J]. Croat Med J, 2019, 60(6):556-559.
14
Morton J, Hardwick RH, Tilney HS, et al. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures[J]. Surg Endosc, 2021, 35(5):2169-2177.
15
Ragavan N, Bharathkumar S, Chirravur P, et al. Robot-assisted laparoscopic radical prostatectomy utilizing Hugo RAS platform: initial experience[J]. J Endourol, 2023, 37(2):147-150.
16
Gon Park S, Park J, Rock Choi H, et al. Deep learning model for realtime semantic segmentation during intraoperative robotic prostatectomy[J]. Eur Urol Open Sci, 2024, 62:47-53.
17
Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery[J]. Curr Opin Urol, 2009, 19(1):102-107.
18
Bergholz M, Ferle M, Weber BM. The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis[J]. Sci Rep, 2023, 13(1):19215.
19
Knudsen JE, Ghaffar U, Ma R, et al. Clinical applications of artificial intelligence in robotic surgery[J]. J Robot Surg, 2024, 18(1):102.
20
Chen Y, Guo S, Liu Y, et al. Single-port laparoscopic appendectomy using a needle-type grasping forceps compared with conventional three-port laparoscopic appendectomy for patients with acute uncomplicated appendicitis: a single-center retrospective study[J]. J Int Med Res, 2022, 50(8):3000605221119647.
21
Ditonno F, Licari LC, Franco A, et al. Current expectations and opinions on single-port robotic surgery: a survey among european experts by the SPARC collaborative group[J]. Eur Urol Open Sci, 2024, 60:54-57.
22
Hannaford B, Rosen J, Friedman DW, et al. Raven-II: an open platform for surgical robotics research[J]. IEEE Trans Biomed Eng, 2013, 60(4):954-959.
23
Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery[J]. Sci Transl Med, 2016, 8(337):337ra64.
24
Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis[J]. Sci Robot, 2022, 7(62):eabj2908.
25
Wang Y, Cao D, Chen SL, et al. Current trends in three-dimensional visualization and real-time navigation as well as robot-assisted technologies in hepatobiliary surgery[J]. World J Gastrointest Surg, 2021, 13(9):904-922.
26
Wendler T, van Leeuwen FWB, Navab N, et al. How molecular imaging will enable robotic precision surgery : the role of artificial intelligence, augmented reality, and navigation[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13):4201-4224.
27
Müller D, Stier R, Straatman J, et al. ICG lymph node mapping in cancer surgery of the upper gastrointestinal tract[J]. Chirurgie (Heidelb), 2022, 93(10):925-933.
28
Ondruschka B, Lee JHC, Scholze M, et al. A biomechanical comparison between human calvarial bone and a skull simulant considering the role of attached periosteum and dura mater[J]. Int J Legal Med, 2019, 133(5):1603-1610.
29
Wu J, Hui W, Niu J, et al. Collaborative control method and experimental research on robot-assisted craniomaxillofacial osteotomy based on the force feedback and optical navigation[J]. J Craniofac Surg, 2022, 33(7):2011-2018.
30
El Rassi I, El Rassi JM. A review of haptic feedback in tele-operated robotic surgery[J]. J Med Eng Technol, 2020, 44(5):247-254.
31
Ouyang Q, Wu J, Sun S, et al. Bio-inspired haptic feedback for artificial palpation in robotic surgery[J]. IEEE Trans Biomed Eng, 2021, 68(10):3184-3193.
32
Ju GQ, Wang ZJ, Shi JZ, et al. A comparison of perioperative outcomes between extraperitoneal robotic single-port and multiport radical prostatectomy with the da Vinci Si Surgical System[J]. Asian J Androl, 2021, 23(6):640-647.
33
Lenfant L, Sawczyn G, Aminsharifi A, et al. Pure single-site robot-assisted radical prostatectomy using single-port versus multiport robotic radical prostatectomy: a single-institution comparative study[J]. Eur Urol Focus, 2021, 7(5):964-972.
34
Lai A, Dobbs RW, Talamini S, et al. Single port robotic radical prostatectomy: a systematic review[J]. Transl Androl Urol, 2020, 9(2):898-905.
35
Noh TI, Tae JH, Shim JS, et al. Initial experience of single-port robot-assisted radical prostatectomy: a single surgeon′s experience with technique description[J]. Prostate Int, 2022, 10(2):85-91.
36
Nguyen TT, Dobbs RW, Vuong HG, et al. Single-port and multiport robot-assisted radical prostatectomy: A meta-analysis[J]. Prostate Int, 2023, 11(4):187-194.
37
Biswas P, Sikander S, Kulkarni P.Recent advances in robot-assisted surgical systems[J].Biomedical Engineering Advances, 2023, 6.
38
Feng Y, Guo Z, Dong Z, et al. An efficient cardiac mapping strategy for radiofrequency catheter ablation with active learning[J]. Int J Comput Assist Radiol Surg, 2017, 12(7):1199-1207.
39
Dagnino G, Kundrat D.Robot-assistive minimally invasive surgery: trends and future directions[J].IJIRA, 2024(4):8.
40
Reddy K, Gharde P, Tayade H, et al. Advancements in robotic surgery: a comprehensive overview of current utilizations and upcoming frontiers[J]. Cureus, 2023, 15(12):e50415.
41
Su H, Kwok KW, Cleary K, et al. State of the art and future opportunities in mri-guided robot-assisted surgery and interventions[J]. Proc IEEE Inst Electr Electron Eng, 2022, 110(7):968-992.
42
Monfaredi R, Cleary K, Sharma K. MRI robots for needle-based interventions: systems and technology[J]. Ann Biomed Eng, 2018, 46(10):1479-1497.
43
Wang X, Smirnov S. Label-free DNA sensor based on surface charge modulated ionic conductance[J]. ACS Nano, 2009, 3(4):1004-1010.
44
Li J, Esteban-Fernández de ávila B, Gao W, et al. Micro/Nanorobots for biomedicine: delivery, surgery, sensing, and detoxification[J]. Sci Robot, 2017, 2(4):eaam6431.
45
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv Sci (Weinh). 2020 Oct 4;7(21):2002203.
46
Lin B, Lei Y, Wang J, et al. Microfluidic-based exosome analysis for liquid biopsy[J]. Small Methods, 2021, 5(3):e2001131.
47
Baylis JR, St John AE, Wang X, et al. Self-propelled dressings containing thrombin and tranexamic acid improve short-term survival in a swine model of lethal junctional hemorrhage[J]. Shock, 2016, 46(3 Suppl 1):123-128.
48
Baylis JR, Yeon JH, Thomson MH, et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage[J]. Sci Adv, 2015, 1(9):e1500379.
49
Zhang C, Hallbeck MS, Salehinejad H, et al. The integration of artificial intelligence in robotic surgery: a narrative review[J]. Surgery, 2024, 176(3):552-557.
50
Lee A, Baker TS, Bederson JB, et al. Levels of autonomy in FDA-cleared surgical robots: a systematic review[J]. NPJ Digit Med, 2024, 7(1):103.
51
Fiorini P, Goldberg KY, Liu Y, et al. Concepts and trends n autonomy for robot-assisted surgery[J]. Proc IEEE Inst Electr Electron Eng, 2022, 110(7):993-1011.
52
Liu T, Wang J, Wong S,et al.A review on the form and complexity of human–robot interaction in the evolution of autonomous surgery[J].Advanced Intelligent Systems, 2024, 6(11).
53
Koukourikis P, Rha KH. Robotic surgical systems in urology: what is currently available?[J] Investig Clin Urol, 2021, 62(1):14-22.
54
Fard MJ, Pandya AK, Chinnam RB, et al. Distance-based time series classification approach for task recognition with application in surgical robot autonomy[J]. Int J Med Robot, 2017, 13(3).
55
Marcus HJ, Ramirez PT, Khan DZ, et al. The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring[J]. Nat Med, 2024, 30(1):61-75.
56
Ineichen BV, Furrer E, Grüninger SL, et al. Analysis of animal-to-human translation shows that only 5% of animal-tested therapeutic interventions obtain regulatory approval for human applications[J]. PLoS Biol, 2024, 22(6):e3002667.
57
Ruan Y, Robinson NB, Khan FM, et al. The translation of surgical animal models to human clinical research: a cross-sectional study[J]. Int J Surg, 2020, 77:25-29.
[1] 戴尅戎. 商业管理技术在成果临床转化中的地位——中西差异与思考[J/OL]. 中华关节外科杂志(电子版), 2016, 10(04): 0-0.
[2] 杨媛媛, 黄鹤光, 陈燕昌, 陆逢春, 林贤超, 林荣贵, 王丛菲. 机器人与腹腔镜手术治疗造口旁疝18例临床分析[J/OL]. 中华普通外科学文献(电子版), 2022, 16(05): 336-340.
[3] 陈莉, 何斌, 赵庆辉, 李翀, 汤红明, 刘中民. 干细胞新兴学科人才建设的实践与探索[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 176-180.
[4] 赵继宗. 脊髓损伤再生修复及临床转化研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 129-131.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?