| 1 |
韩晓光,朱小龙,姜宇桢,等. 人工智能与机器人辅助医学发展研究[J]. 中国工程科学,2023,25(5):43-54.
|
| 2 |
王帅彬,范来来,虞海峰,等. 机器人外科手术系统辅助下腹腔镜肾部分切除手术的研究进展[J]. 温州医科大学学报,2023,53(9):768-774,封3.
|
| 3 |
熊波波,张劲松,李宁,等. 机器人在肾部分切除术中的应用进展[J]. 现代泌尿外科杂志,2020,25(7):648-651.
|
| 4 |
Jurado A, Romeo A, Gueglio G, et al. Current trends in management of renal cell carcinoma with venous thrombus extension[J]. Curr Urol Rep, 2021, 22(4):23.
|
| 5 |
Gu L, Ma X, Gao Y, et al. Robotic versus open level Ⅰ-Ⅱ inferior vena cava thrombectomy: a matched group comparative analysis[J]. J Urol, 2017, 198(6):1241-1246.
|
| 6 |
Park J, Bak S, Song JY, et al. Robotic surgery in gynecology: the present and the future[J]. Obstet Gynecol Sci, 2023, 66(6):518-528.
|
| 7 |
刘旺敏,张墨. 混合现实技术用于机器人辅助腹腔镜肾部分切除术的研究进展[J]. 天津医药,2022,50(4):444-448.
|
| 8 |
王楠,李立安,杨雯,等. 5G远程机器人妇科手术初步临床实践与评价[J/OL]. 中华腔镜外科杂志(电子版),2024,17(3):168-172.
|
| 9 |
马涛,刘志伟,安丰,等. 国产手术机器人与达芬奇手术机器人在肾肿瘤肾部分切除术中的应用效果比较[J]. 现代肿瘤医学,2025,33(3):448-452.
|
| 10 |
刘洋,方芳,李莹,等. 国产单孔手术机器人辅助vNOTES治疗妇科良性疾病[J/OL]. 中华腔镜外科杂志(电子版),2024,17(4):234-238.
|
| 11 |
Picozzi P, Nocco U, Labate C,et al.Advances in robotic surgery: a review of new surgical platforms[J].Electronics, 2024, 13.
|
| 12 |
Brassetti A, Ragusa A, Tedesco F,et al.Robotic surgery in urology: history from PROBOT to HUGO TM[J].Sensors (14248220), 2023, 23(16).
|
| 13 |
Kaštelan Ž,Kneževic N, Hudolin T, et al. Extraperitoneal radical prostatectomy with the Senhance Surgical System robotic platform[J]. Croat Med J, 2019, 60(6):556-559.
|
| 14 |
Morton J, Hardwick RH, Tilney HS, et al. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures[J]. Surg Endosc, 2021, 35(5):2169-2177.
|
| 15 |
Ragavan N, Bharathkumar S, Chirravur P, et al. Robot-assisted laparoscopic radical prostatectomy utilizing Hugo RAS platform: initial experience[J]. J Endourol, 2023, 37(2):147-150.
|
| 16 |
Gon Park S, Park J, Rock Choi H, et al. Deep learning model for realtime semantic segmentation during intraoperative robotic prostatectomy[J]. Eur Urol Open Sci, 2024, 62:47-53.
|
| 17 |
Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery[J]. Curr Opin Urol, 2009, 19(1):102-107.
|
| 18 |
Bergholz M, Ferle M, Weber BM. The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis[J]. Sci Rep, 2023, 13(1):19215.
|
| 19 |
Knudsen JE, Ghaffar U, Ma R, et al. Clinical applications of artificial intelligence in robotic surgery[J]. J Robot Surg, 2024, 18(1):102.
|
| 20 |
Chen Y, Guo S, Liu Y, et al. Single-port laparoscopic appendectomy using a needle-type grasping forceps compared with conventional three-port laparoscopic appendectomy for patients with acute uncomplicated appendicitis: a single-center retrospective study[J]. J Int Med Res, 2022, 50(8):3000605221119647.
|
| 21 |
Ditonno F, Licari LC, Franco A, et al. Current expectations and opinions on single-port robotic surgery: a survey among european experts by the SPARC collaborative group[J]. Eur Urol Open Sci, 2024, 60:54-57.
|
| 22 |
Hannaford B, Rosen J, Friedman DW, et al. Raven-II: an open platform for surgical robotics research[J]. IEEE Trans Biomed Eng, 2013, 60(4):954-959.
|
| 23 |
Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery[J]. Sci Transl Med, 2016, 8(337):337ra64.
|
| 24 |
Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis[J]. Sci Robot, 2022, 7(62):eabj2908.
|
| 25 |
Wang Y, Cao D, Chen SL, et al. Current trends in three-dimensional visualization and real-time navigation as well as robot-assisted technologies in hepatobiliary surgery[J]. World J Gastrointest Surg, 2021, 13(9):904-922.
|
| 26 |
Wendler T, van Leeuwen FWB, Navab N, et al. How molecular imaging will enable robotic precision surgery : the role of artificial intelligence, augmented reality, and navigation[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13):4201-4224.
|
| 27 |
Müller D, Stier R, Straatman J, et al. ICG lymph node mapping in cancer surgery of the upper gastrointestinal tract[J]. Chirurgie (Heidelb), 2022, 93(10):925-933.
|
| 28 |
Ondruschka B, Lee JHC, Scholze M, et al. A biomechanical comparison between human calvarial bone and a skull simulant considering the role of attached periosteum and dura mater[J]. Int J Legal Med, 2019, 133(5):1603-1610.
|
| 29 |
Wu J, Hui W, Niu J, et al. Collaborative control method and experimental research on robot-assisted craniomaxillofacial osteotomy based on the force feedback and optical navigation[J]. J Craniofac Surg, 2022, 33(7):2011-2018.
|
| 30 |
El Rassi I, El Rassi JM. A review of haptic feedback in tele-operated robotic surgery[J]. J Med Eng Technol, 2020, 44(5):247-254.
|
| 31 |
Ouyang Q, Wu J, Sun S, et al. Bio-inspired haptic feedback for artificial palpation in robotic surgery[J]. IEEE Trans Biomed Eng, 2021, 68(10):3184-3193.
|
| 32 |
Ju GQ, Wang ZJ, Shi JZ, et al. A comparison of perioperative outcomes between extraperitoneal robotic single-port and multiport radical prostatectomy with the da Vinci Si Surgical System[J]. Asian J Androl, 2021, 23(6):640-647.
|
| 33 |
Lenfant L, Sawczyn G, Aminsharifi A, et al. Pure single-site robot-assisted radical prostatectomy using single-port versus multiport robotic radical prostatectomy: a single-institution comparative study[J]. Eur Urol Focus, 2021, 7(5):964-972.
|
| 34 |
Lai A, Dobbs RW, Talamini S, et al. Single port robotic radical prostatectomy: a systematic review[J]. Transl Androl Urol, 2020, 9(2):898-905.
|
| 35 |
Noh TI, Tae JH, Shim JS, et al. Initial experience of single-port robot-assisted radical prostatectomy: a single surgeon′s experience with technique description[J]. Prostate Int, 2022, 10(2):85-91.
|
| 36 |
Nguyen TT, Dobbs RW, Vuong HG, et al. Single-port and multiport robot-assisted radical prostatectomy: A meta-analysis[J]. Prostate Int, 2023, 11(4):187-194.
|
| 37 |
Biswas P, Sikander S, Kulkarni P.Recent advances in robot-assisted surgical systems[J].Biomedical Engineering Advances, 2023, 6.
|
| 38 |
Feng Y, Guo Z, Dong Z, et al. An efficient cardiac mapping strategy for radiofrequency catheter ablation with active learning[J]. Int J Comput Assist Radiol Surg, 2017, 12(7):1199-1207.
|
| 39 |
Dagnino G, Kundrat D.Robot-assistive minimally invasive surgery: trends and future directions[J].IJIRA, 2024(4):8.
|
| 40 |
Reddy K, Gharde P, Tayade H, et al. Advancements in robotic surgery: a comprehensive overview of current utilizations and upcoming frontiers[J]. Cureus, 2023, 15(12):e50415.
|
| 41 |
Su H, Kwok KW, Cleary K, et al. State of the art and future opportunities in mri-guided robot-assisted surgery and interventions[J]. Proc IEEE Inst Electr Electron Eng, 2022, 110(7):968-992.
|
| 42 |
Monfaredi R, Cleary K, Sharma K. MRI robots for needle-based interventions: systems and technology[J]. Ann Biomed Eng, 2018, 46(10):1479-1497.
|
| 43 |
Wang X, Smirnov S. Label-free DNA sensor based on surface charge modulated ionic conductance[J]. ACS Nano, 2009, 3(4):1004-1010.
|
| 44 |
Li J, Esteban-Fernández de ávila B, Gao W, et al. Micro/Nanorobots for biomedicine: delivery, surgery, sensing, and detoxification[J]. Sci Robot, 2017, 2(4):eaam6431.
|
| 45 |
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv Sci (Weinh). 2020 Oct 4;7(21):2002203.
|
| 46 |
Lin B, Lei Y, Wang J, et al. Microfluidic-based exosome analysis for liquid biopsy[J]. Small Methods, 2021, 5(3):e2001131.
|
| 47 |
Baylis JR, St John AE, Wang X, et al. Self-propelled dressings containing thrombin and tranexamic acid improve short-term survival in a swine model of lethal junctional hemorrhage[J]. Shock, 2016, 46(3 Suppl 1):123-128.
|
| 48 |
Baylis JR, Yeon JH, Thomson MH, et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage[J]. Sci Adv, 2015, 1(9):e1500379.
|
| 49 |
Zhang C, Hallbeck MS, Salehinejad H, et al. The integration of artificial intelligence in robotic surgery: a narrative review[J]. Surgery, 2024, 176(3):552-557.
|
| 50 |
Lee A, Baker TS, Bederson JB, et al. Levels of autonomy in FDA-cleared surgical robots: a systematic review[J]. NPJ Digit Med, 2024, 7(1):103.
|
| 51 |
Fiorini P, Goldberg KY, Liu Y, et al. Concepts and trends n autonomy for robot-assisted surgery[J]. Proc IEEE Inst Electr Electron Eng, 2022, 110(7):993-1011.
|
| 52 |
Liu T, Wang J, Wong S,et al.A review on the form and complexity of human–robot interaction in the evolution of autonomous surgery[J].Advanced Intelligent Systems, 2024, 6(11).
|
| 53 |
Koukourikis P, Rha KH. Robotic surgical systems in urology: what is currently available?[J] Investig Clin Urol, 2021, 62(1):14-22.
|
| 54 |
Fard MJ, Pandya AK, Chinnam RB, et al. Distance-based time series classification approach for task recognition with application in surgical robot autonomy[J]. Int J Med Robot, 2017, 13(3).
|
| 55 |
Marcus HJ, Ramirez PT, Khan DZ, et al. The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring[J]. Nat Med, 2024, 30(1):61-75.
|
| 56 |
Ineichen BV, Furrer E, Grüninger SL, et al. Analysis of animal-to-human translation shows that only 5% of animal-tested therapeutic interventions obtain regulatory approval for human applications[J]. PLoS Biol, 2024, 22(6):e3002667.
|
| 57 |
Ruan Y, Robinson NB, Khan FM, et al. The translation of surgical animal models to human clinical research: a cross-sectional study[J]. Int J Surg, 2020, 77:25-29.
|