| 1 |
Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives[J]. Nat Rev Clin Oncol, 2015, 12(2):115-124.
|
| 2 |
Jayne DG, Guillou PJ, Thorpe H, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group[J]. J Clin Oncol, 2007, 25(21):3061-3068.
|
| 3 |
希龙夫,薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(3): 166-171.
|
| 4 |
Foersch S, Glasner C, Woerl AC, et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer[J]. Nat Med, 2023, 29(2):430-439.
|
| 5 |
Seager A, Sharp L, Neilson LJ, et al. Polyp detection with colonoscopy assisted by the GI Genius artificial intelligence endoscopy module compared with standard colonoscopy in routine colonoscopy practice (COLO-DETECT): a multicentre, open-label, parallel-arm, pragmatic randomised controlled trial[J]. Lancet Gastroenterol Hepatol, 2024, 9(10):911-923.
|
| 6 |
Hassan C, Spadaccini M, Mori Y, et al. Real-time computer-aided detection of colorectal neoplasia during colonoscopy: a systematic review and meta-analysis[J]. Ann Intern Med, 2023, 176(9):1209-1220.
|
| 7 |
Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review[J]. Ann Surg, 2021, 273(4):684-693.
|
| 8 |
Hashimoto DA, Rosman G, Rus D, et al. Artificial intelligence in surgery: promises and perils[J]. Ann Surg, 2018, 268(1):70-76.
|
| 9 |
Yin Y, Luo S, Zhou J, et al. LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation[J]. Neural Netw, 2024, 170:441-452.
|
| 10 |
Carstens M, Rinner FM, Bodenstedt S, et al. The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science[J]. Sci Data, 2023, 10(1):3.
|
| 11 |
Kitaguchi D, Fujino T, Takeshita N, et al. Limited generalizability of single deep neural network for surgical instrument segmentation in different surgical environments[J]. Sci Rep, 2022, 12(1):12575.
|
| 12 |
HASAN S K, LINTE C A. U-NetPlus: A modified encoder-decoder U-Net architecture for semantic and instance segmentation of surgical instruments from laparoscopic images; proceedings of the 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), F, 2019[C]. IEEE.
|
| 13 |
NI Z-L, BIAN G-B, XIE X-L, et al. RASNet: Segmentation for tracking surgical instruments in surgical videos using refined attention segmentation network; proceedings of the 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), F, 2019 [C]. IEEE.
|
| 14 |
Kitaguchi D, Lee Y, Hayashi K, et al. Development and Validation of a Model for Laparoscopic Colorectal surgical instrument recognition using convolutional neural network-based instance segmentation and videos of laparoscopic procedures[J]. JAMA Netw Open, 2022, 5(8):e2226265.
|
| 15 |
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7):669-685.
|
| 16 |
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research[J]. Int J Surg, 2020, 79:88-94.
|
| 17 |
Martin JA, Regehr G, Reznick R, et al. Objective structured assessment of technical skill (OSATS) for surgical residents[J]. Br J Surg, 1997, 84(2):273-278.
|
| 18 |
Gofton WT, Dudek NL, Wood TJ, et alJ. The Ottawa Surgical Competency Operating Room Evaluation (O-SCORE): a tool to assess surgical competence[J]. Acad Med, 2012, 87(10):1401-1407.
|
| 19 |
Miskovic D, Ni M, Wyles SM, et al. Observational clinical human reliability analysis (OCHRA) for competency assessment in laparoscopic colorectal surgery at the specialist level[J]. Surg Endosc, 2012, 26(3):796-803.
|
| 20 |
Foster JD, Miskovic D, Allison AS, et al. Application of objective clinical human reliability analysis (OCHRA) in assessment of technical performance in laparoscopic rectal cancer surgery[J]. Tech Coloproctol, 2016, 20(6):361-367.
|
| 21 |
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Development and validation of a 3-dimensional convolutional neural network for automatic surgical skill assessment based on spatiotemporal video analysis[J]. JAMA Netw Open, 2021, 4(8):e2120786.
|
| 22 |
Kiyasseh D, Ma R, Haque TF, et al. A vision transformer for decoding surgeon activity from surgical videos[J]. Nat Biomed Eng, 2023, 7(6):780-796.
|
| 23 |
Gachabayov M, Tulina I, Bergamaschi R, et al. Does transanal total mesorectal excision of rectal cancer improve histopathology metrics and/or complication rates? A meta-analysis[J]. Surg Oncol, 2019, 30:47-51.
|
| 24 |
Adamina M, Buchs NC, Penna M, et al. Gallen consensus on safe implementation of transanal total mesorectal excision[J]. Surg Endosc, 2018, 32(3):1091-1103.
|
| 25 |
Kolbinger FR, Bodenstedt S, Carstens M, et al. Artificial intelligence for context-aware surgical guidance in complex robot-assisted oncological procedures: An exploratory feasibility study[J]. Eur J Surg Oncol, 2024, 50(12):106996.
|
| 26 |
Igaki T, Kitaguchi D, Kojima S, et al. Artificial intelligence-based total mesorectal excision plane navigation in laparoscopic colorectal surgery[J]. Dis Colon Rectum, 2022, 65(5):e329-e333.
|
| 27 |
Han F, Zhong G, Zhi S, et al. Artificial intelligence recognition system of pelvic autonomic nerve during total mesorectal excision[J]. Dis Colon Rectum, 2025, 68(3):308-315.
|
| 28 |
Ryu S, Imaizumi Y, Goto K, et al. Artificial intelligence-enhanced navigation for nerve recognition and surgical education in laparoscopic colorectal surgery[J]. Surg Endosc, 2025, 39(2):1388-1396.
|
| 29 |
Ryu S, Goto K, Imaizumi Y, et al. Laparoscopic colorectal surgery with anatomical recognition with artificial intelligence assistance for nerves and dissection layers[J]. Ann Surg Oncol, 2024, 31(3):1690-1691.
|
| 30 |
Narihiro S, Kitaguchi D, Hasegawa H, et al. Deep learning-based real-time ureter identification in laparoscopic colorectal surgery[J]. Dis Colon Rectum, 2024, 67(10):e1596-e1599.
|
| 31 |
Thomas DJ, Singh D. Applications of artificial intelligence and deep learning in colorectal cancer surgery - correspondence[J]. Int J Surg, 2022, 108:106980.
|
| 32 |
樊代明,梁寒,张陈平,等. 《中国肿瘤整合诊治技术指南—ICG导航技术》[J]. 2023.
|
| 33 |
Cahill RA, O′Shea DF, Khan MF, et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissueclassification[J]. Br J Surg, 2021, 108(1):5-9.
|
| 34 |
Cao Z, Pan X, Yu H, et al. A deep learning approach for detecting colorectal cancer via raman spectra[J]. BME Front, 2022:9872028.
|
| 35 |
Quero G, Mascagni P, Kolbinger FR, et al. Artificial intelligence in colorectal cancer surgery: present and future perspectives[J]. Cancers (Basel), 2022, 14(15):3803.
|
| 36 |
Xu ZY, Li ZZ, Cao LM, et al. Seizing the fate of lymph nodes in immunotherapy: To preserve or not?[J]. Cancer Lett, 2024, 588:216740.
|
| 37 |
Hajibandeh S, Hajibandeh S, Maw A. Meta-analysis and trial sequential analysis of randomized controlled trials comparing high and low ligation of the inferior mesenteric artery in rectal cancer surgery[J]. Dis Colon Rectum, 2020, 63(7):988-999.
|
| 38 |
徐徕,陆君阳,赵轩. 右半结肠癌手术中国专家共识(2024版)[J/OL]. 消化肿瘤杂志(电子版), 2024, 16(4): 401-409.
|
| 39 |
Zhu X, Sun H, Wang Y, et al. Prediction of lymph node metastasis in colorectal cancer using intraoperative fluorescence multi-modal imaging[J]. IEEE Trans Med Imaging, 2025, 44(3):1568-1580.
|
| 40 |
Yang Y, Wang G, He J, et al. High tie versus low tie of the inferior mesenteric artery in colorectal cancer: a meta-analysis[J]. Int J Surg, 2018, 52:20-24.
|
| 41 |
Sikkenk DJ, Sterkenburg AJ, Burghgraef TA, et al. Robot-assisted fluorescent sentinel lymph node identification in early-stage colon cancer[J]. Surg Endosc, 2023, 37(11):8394-8403.
|
| 42 |
Fan Q, Fu Z, Xiong D. Advantages and prospects of robotic surgery for colorectal cancer[J]. Intelligent Surgery, 2025, 8:1-7.
|
| 43 |
Sikkenk DJ, Sterkenburg AJ, Burghgraef TA, et al. Robot-assisted fluorescent sentinel lymph node identification in early-stage colon cancer[J]. Surg Endosc, 2023, 37(11):8394-8403.
|
| 44 |
张恭,杨叶蓁,王斐,等. 腔镜手术机器人研发的关键问题及解决对策[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(3):129-133.
|
| 45 |
施薇薇,楼微华,狄文,等. 人工智能驱动的腔镜外科发展:研究进展与未来趋势[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(3):177-183.
|