切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2024, Vol. 17 ›› Issue (03) : 129 -134. doi: 10.3877/cma.j.issn.1674-6899.2024.03.001

专家论坛

人工智能视觉图像分割在腔镜外科教学中的应用
李梦阳1, 张恩犁1, 吴俊杰1, 赵之明1,()   
  1. 1. 100853 北京,中国人民解放军总医院第一医学中心肝胆胰外科医学部
  • 收稿日期:2024-04-28 出版日期:2024-06-30
  • 通信作者: 赵之明

Application of artificial intelligence visual image segmentation in surgical training

Mengyang Li1, Enli Zhang1, Junjie Wu1, Zhiming Zhao1,()   

  1. 1. Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese People′s Liberation Army (PLA) General Hospital, Beijing 100853, China
  • Received:2024-04-28 Published:2024-06-30
  • Corresponding author: Zhiming Zhao
引用本文:

李梦阳, 张恩犁, 吴俊杰, 赵之明. 人工智能视觉图像分割在腔镜外科教学中的应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(03): 129-134.

Mengyang Li, Enli Zhang, Junjie Wu, Zhiming Zhao. Application of artificial intelligence visual image segmentation in surgical training[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2024, 17(03): 129-134.

随着科技手段的发展和外科模式的改变,外科教学的方式也随之进步。人工智能的深度介入将持续影响医疗行业变革。"数据"是人工智能探索的基础,腔镜外科手术产生的海量视频、图像数据高度契合人工智能模型开发的需求。人工智能视觉分割是机器学习进行情景感知的基础,目前已实现了术中自动化手术器械的分割识别、部分术式的手术流程识别和关键手术区域识别。在进一步提升准确性后,手术视频的全自动识别和标注将有助于低年资外科医师高效自主学习手术。这或可改变传统外科的教学模式。

Surgical training has progressed with the development of medical technology. The in-depth intervention of artificial intelligence will continue to influence the medical industry. "Data" is the basis for AI exploration, and the massive video and image data generated by laparoscopic surgery is highly suitable for the development of AI models. Artificial intelligence visual segmentation is the basis of machine learning for situational awareness, and has already achieved the segmentation and identification of automated intraoperative surgical instruments, the identification of surgical processes in some surgical procedures, and the identification of key surgical areas. With further improvement in accuracy, fully automated recognition and annotation of surgical videos will help junior surgeons learn surgery efficiently and autonomously. This may change the traditional teaching mode of surgery.

图1 SurgNet模型自动分割手术器械及术中重要血管注:A.无标注原始图像;B. SurgNet自动化分割和标注血管及手术器械
表1 手术图像分割数据集信息
1
Maier-Hein L, Vedula SS, Speidel S, et al. Surgical data science for next-generation interventions[J]. Nat Biomed Eng, 2017, 1(9):691-696.
2
胡明根,陈况,马奔,等. 微创外科时代肝胆外科医师教学培养模式的探讨[J/CD]. 中华腔镜外科杂志(电子版), 2020, 13(2):65-68.
3
Bailey RW, Imbembo AL, Zucker KA. Establishment of a laparoscopic cholecystectomy training program[J]. Am Surg, 1991, 57(4):231-236.
4
Madion MP, Kastenmeier A, Goldblatt MI, et al. Robotic surgery training curricula: prevalence, perceptions, and educational experiences in general surgery residency programs[J]. Surg Endosc, 2022, 36(9):6638-6646.
5
Bjerrum F, Thomsen ASS, Nayahangan LJ, et al. Surgical simulation: current practices and future perspectives for technical skills training[J]. Med Teach, 2018, 40(7):668-675.
6
Cook DA, Hatala R, Brydges R, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis[J]. JAMA, 2011, 306(9):978-988.
7
Chen G, Jin S, Xia Q, et al. Insight into the history and trends of surgical simulation training in education: a bibliometric analysis[J]. Int J Surg, 2023, 109(8):2204-2213.
8
Costello DM, Huntington I, Burke G, et al. A review of simulation training and new 3D computer-generated synthetic organs for robotic surgery education[J]. J Robot Surg, 2022, 16(4):749-763.
9
Aydin A, Raison N, Khan MS, et al. Simulation-based training and assessment in urological surgery[J]. Nat Rev Urol, 2016, 13(9):503-519.
10
Chen IA, Ghazi A, Sridhar A, et al. Evolving robotic surgery training and improving patient safety, with the integration of novel technologies[J]. World J Urol, 2021, 39(8):2883-2893.
11
Zheng, S. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. in computer vision and pattern recognition (2021).
12
Shvets A, Rakhlin A, Kalinin AA, et al. Automatic instrument segmentation in robot-assisted surgery using deep learning[C]. 2018.
13
Jin Y, Cheng K, Dou Q, et al. Incorporating temporal prior from motion flow for instrument segmentation in minimally invasive surgery video[C]//International Conference on Medical Image Computing and Computor-Assisted Intervention. Springer, Cham, 2019.
14
Ni ZL, Bian GB, Hou ZG, et al.Attention-guided lightweight network for real-time segmentation of robotic surgical instruments[C].IEEE, 2020.
15
Shen W, Wang Y, Liu M, et al. Branch aggregation attention network for robotic surgical instrument segmentation[J]. IEEE Trans Med Imaging, 2023, 42(11):3408-3419.
16
Madad Zadeh S, Francois T, Calvet L, et al. SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology[J]. Surg Endosc, 2020, 34(12):5377-5383.
17
Kumazu Y, Kobayashi N, Kitamura N, et al. Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy[J]. Sci Rep, 2021, 11(1):21198.
18
Koo B, Robu MR, Allam M, et al. Automatic, global registration in laparoscopic liver surgery[J]. Int J Comput Assist Radiol Surg, 2022, 17(1):167-176.
19
Une N, Kobayashi S, Kitaguchi D, et al. Intraoperative artificial intelligence system identifying liver vessels in laparoscopic liver resection: a retrospective experimental study[J]. Surg Endosc, 2024, 38(2):1088-1095.
20
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time vascular anatomical image navigation for laparoscopic surgery: experimental study[J]. Surg Endosc, 2022, 36(8):6105-6112.
21
Chen J, Li M, Han H, et al. Surgnet: self-supervised pretraining with semantic consistency for vessel and instrument segmentation in surgical images[J]. IEEE Trans Med Imaging, 2024, 43(4):1513-1525.
22
Bodenstedt S, Allan M, Agustinos A, et al.Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery[C]. 2018.
23
Allan, M.Shvets, A.Kurmann, T.Zhang, Z. & Azizian, M. 2017 Robotic Instrument Segmentation Challenge. (2019).
24
Allan M, Kondo S, Bodenstedt S, et al. 2018 Robotic Scene Segmentation Challenge[C]. 2021.
25
Roβ T, Reinke A, Full PM, et al. Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge[J]. Med Image Anal, 2021, 70:101920.
26
Pfeiffer M, Funke I, Robu MR, et al. Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation[C]. 2019.
27
Jha D, Ali S, Emanuelsen K, et al. Kvasir-Instrument: diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy[C]//International Conference on Multimedia Modeling. Springer, Cham, 2021.
28
Maier-Hein L, Mersmann S, Kondermann D, et al. Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images[J]. Med Image Comput Comput Assist Interv, 2014, 17(Pt 2):438-445.
29
Bouget D, Benenson R, Omran M, et al. Detecting surgical tools by modelling local appearance and global shape[J]. IEEE Trans Med Imaging, 2015, 34(12):2603-2617.
30
Hong WY, Kao CL, Kuo YH, et al. CholecSeg8k: A semantic segmentation dataset for laparoscopic cholecystectomy based on cholec80[C]. 2020.
31
Grammatikopoulou, M.,et al. CaDIS: Cataract dataset for surgical RGB-image segmentation. 71 (2021).
32
Carstens M, Rinner FM, Bodenstedt S, et al. The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science[J]. Sci Data, 2023, 10(1):3.
33
Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg, 2022, 276(2):363-369.
34
Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning[J]. Ann Surg, 2022, 275(5):955-961.
35
Liu Y, Zhao S, Zhang G, et al. Multilevel effective surgical workflow recognition in robotic left lateral sectionectomy with deep learning: experimental research[J]. Int J Surg, 2023, 109(10):2941-2952.
36
Kiyasseh D, Ma R, Haque TF, et al. A vision transformer for decoding surgeon activity from surgical videos[J]. Nat Biomed Eng, 2023, 7(6):780-796.
37
Le Roy B, Ozgur E, Koo B, et al. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment (with video)[J]. J Visc Surg, 2019, 156(3):261-262.
38
Tukra S, Marcus HJ, Giannarou S. See-through vision with unsupervised scene occlusion reconstruction[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(7):3779-3790.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 李子禹, 卢信星, 李双喜, 陕飞. 食管胃结合部腺癌腹腔镜手术重建方式的选择[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 5-8.
[3] 李乐平, 张荣华, 商亮. 腹腔镜食管胃结合部腺癌根治淋巴结清扫策略[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 9-12.
[4] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[5] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[6] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[7] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[8] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[9] 李博, 贾蓬勃, 李栋, 李小庆. ERCP与LCBDE治疗胆总管结石继发急性重症胆管炎的效果[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 60-63.
[10] 王庆亮, 党兮, 师凯, 刘波. 腹腔镜联合胆道子镜经胆囊管胆总管探查取石术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 313-313.
[11] 杨建辉, 段文斌, 马忠志, 卿宇豪. 腹腔镜下脾部分切除术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 314-314.
[12] 叶劲松, 刘驳强, 柳胜君, 吴浩然. 腹腔镜肝Ⅶ+Ⅷ段背侧段切除[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 315-315.
[13] 郭兵, 王万里, 何凯, 黄汉生. 腹腔镜下肝门部胆管癌根治术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 143-143.
[14] 李凯, 陈淋, 苏怀东, 向涵, 张伟. 超微创器械在改良单孔腹腔镜巨大肝囊肿开窗引流及胆囊切除中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 144-144.
[15] 魏丽霞, 张安澜, 周宝勇, 李明. 腹腔镜下Ⅲb型肝门部胆管癌根治术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 145-145.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?