切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2021, Vol. 14 ›› Issue (06): 379 -384. doi: 10.3877/cma.j.issn.1674-6899.2021.06.014

综述 上一篇    

数字3D技术在胸外科中的发展及应用
林映雪1, 梁朝阳2, 刘阳2, 李宬润2,()   
  1. 1. 100853 北京,解放军总医院第一医学中心胸外科;300071 天津,南开大学医学院
    2. 100853 北京,解放军总医院第一医学中心胸外科
  • 收稿日期:2021-10-11 出版日期:2021-12-30
  • 通信作者: 李宬润
  • 基金资助:
    解放军总医院院级课题(2019MBD-034)

The development and application of 3D technology in thoracic surgery

Yingxue Lin1, Chaoyang Liang2, Yang Liu2, Chengrun Li2,()   

  1. 1. Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.; The Medical School of Nankai University, Tianjin 300071, China
    2. Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2021-10-11 Published:2021-12-30
  • Corresponding author: Chengrun Li

计算机技术已经经历了70余年的发展,在20世纪90年代通过电视辅助胸腔镜手术(video assisted thoracic surgery, VATS)才真正与临床医学结合,尤其是在胸外科领域的应用起来,是胸外科技术发展史上具有里程碑意义的事情。此后30年来,胸外科学在以VATS为主要手术方式的引导下完成了各式手术并发展至今。近年来,计算机硬件技术和软件水平有了突破式的发展,各类专用设备、配套软件等与各医疗专科结合形成了各专业不同技术特色的,以复合型技术支撑为引导的学科技术体系,在胸外科领域的疾病诊断、小结节定位、治疗中已有大量运用和研究探索。在小结节定位方面,笔者对术前CT引导下亚甲蓝注射、术前CT引导下医用胶注射、术前CT引导下cook微弹簧圈定位、术前CT引导下Hook-Wire穿刺定位、电磁导航定位在临床上的应用进行了总结回顾,以及总结笔者所在医院在部分技术实际应用操作中的经验。在胸部疾病治疗方面,3D技术在早期肺癌小结节精准切除的运用中显现出优势,3D打印技术也通过个体化增材制造技术在胸外科(诸如完成了胸壁缺损修复、气管支架置入、骨性关节重构等)应用并取得了满意疗效。相信在未来,随着3D技术与胸外科手术技术的发展、运用和更好地结合,能更好地发挥出数字3D技术在临床应用中的价值,产生更好的社会经济效益,造福广大患者。

Computer technology has undergone more than 70 years of development. It was only in the 1990s that video assisted thoracic surgery (VATS) was truly integrated with clinical medicine, especially in the field of thoracic surgery. In the following 30 years, thoracic surgery has completed various operations under the guidance of VATS as the main surgical method and has developed to this day. In recent years, computer hardware technology and software level has undergone breakthrough development. All kinds of special equipment and supporting software have been combined with various medical specialties, forming a system with different technical characteristics of various professions with composite technology support. In the field of thoracic surgery, there have been a large number of applications and research explorations in diagnosis, small pulmonary nodules localization, and treatment. This article reviewed techniques to localize small pulmonary nodules, including CT-guided methylene blue positioning, CT-guided percutaneous puncture medical glue positioning, CT-guided cook microcoil positioning, CT-guided Hook-Wire puncture positioning, and electromagnetic navigation positioning and shared some experience in the application of some technologies in medical center the author working for. In the treatment of thoracic diseases, 3D technology has shown its advantages in precise sublobar lung resection, while 3D printing technology completed complex operations such as sternocostal reconstruction, airway stent insertion, bone joint reconstruction, etc. and achieved satisfactory results through personalized additive manufacturing technology. It is believed that, in the future, with the development, application and better combination of 3D technology and thoracic surgery technology, the value of digital 3D technology in clinical applications can be better brought into play, resulting in better social and economic benefits, and benefiting more and more patients.

图1 CT检查诊断技术的进步注:A.世界上第一幅由CT扫描获得的人体图像——颅脑CT,分辨力较低,矩阵像素较大;B.曲面重建及最大/最小密度投影技术处理得到的主动脉夹层图像,可以清晰看到夹层的位置和范围(箭头所示);C.经过三维处理后可以多角度、直观对病变进行显示,诊断评估更加准确
图2 术中CT引导结节穿刺定位方案注:A.术中CT专用扫描机架,孔径较普通CT为大;B.穿刺定位用格栅;C.穿刺置入定位针Hook-Wire后再次CT扫描的影像,箭头所示为病变位置
图3 光学导航定位注:A.光学导航定位的实施场景;B.胸腔镜下术中定位实况,圆圈处为病变所在位置
图4 增强现实导航下气管镜定位小结节注:A.气管镜下现实影像与增强现实建模影像;B.运用增强现实技术进行支气管及小结节建模定位
图5 不同切除范围下的胸外科手术模式注:A.肺叶切除;B.肺段切除;C.亚段切除
图6 将二维CT图像转化为3D并经过3D打印指导手术的具体步骤注:A.右肺上叶尖段结节在CT图像位置(黄色箭头示);B.与病变相关的气管三维重建;C.静脉的三维重建;D.全部解剖结构三维重建(箭头示病变位置);E.经1∶1的3D打印解剖模型;F.术后切除的右上肺尖段肺组织(箭头示病变位置)
1
Wang BY, Liu CY, Hsu PK, et al. Single-incision versus multipleincision thoracoscopic lobectomy and segmentectomy: a propensitymatched analysis[J]. Annals of surgery, 2015261(4):793-799.
2
Wu CF, Gonzalez-rivas D, Wen CT, et al. Single-port videoassisted thoracoscopic mediastinal tumour resection[J]. Interact Cardiovasc Thorac Surg, 201521(5):644-649.
3
Wu CF, Gonzalez-rivas D, Wen CT, et al. Comparative short-term clinical outcomes of mediastinum tumor excision performed by conventional vats and single-port vats: is it worthwhile[J]. Medicine, 201594(45):1975.
4
Fernandez prado R, Fieira costa E, Delgado roel M, et al. Management of complications by uniportal video-assisted thoracoscopic surgery[J]. Journal of thoracic disease, 20146(6):669-673.
5
Kenichi Nakamura, Hisashi Saji, Ryu Nakajima, et al. A phase Ⅲ randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer[J]. Jpn J Clin Oncol, 201040(3):271-274.
6
Suzuki K, Watanabe S, Wakabayashi M, et al. A nonrandomized confirmatory phase Ⅲ study of sublobar surgical resection for peripheral ground glass opacity dominant lung cancer defined with thoracic thin-section computed tomography (JCOG0804/WJOG4507L)[J]. Journal of Clinical Oncology, 201735(15):8561-8561.
7
Suzuki K, Saji H, Aokage K, et al. Comparison of pulmonary segmentectomy and lobectomy: safety results of a randomized trial[J]. J Thorac Cardiovasc Surg, 2019158(3):895-907.
8
Chengrun Li, Bin Zheng, Qi Lin Yu, et al. Augmented reality and three-dimensional printing technologies for guiding complex thoracoscopic surgery[J]. Ann Thorac Surg, 2020112(11):1624-1631.
9
Jensen K, Bjerrum F, Hansen HJ, et al. Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy[J]. Surg Endosc, 201731(6):2520-2528.
10
Ujiie H, Yamaguchi A, Gregor A, et al. Developing a virtual reality simulation system for preoperative planning of thoracoscopic thoracic surgery[J]. J Thorac Dis, 202113(2):778-783.
11
Lim AK, Ryu J, Yoon HM, et al. Ergonomic effects of medical augmented reality glasses in video-assisted surgery[J]. Surg Endosc, 20212021(6):1-11.
12
Siu ICH, Li Z, Ng CSH. Latest technology in minimally invasive thoracic surgery[J]. Ann Transl Med, 20197(2):35.
13
Fu R, Zhang C, Zhang T, et al. A three-dimensional printing navigational template combined with mixed reality technique for localizing pulmonary nodules[J]. Interact Cardiovasc Thorac Surg, 202132(4):552-559.
14
Siyaev A, Jo GS. Towards aircraft maintenance metaverse using speech interactions with virtual objects in mixed reality[J]. Sensors (Basel), 202121(6):2066.
15
陈定方,何毅斌.21世纪初的虚拟现实[J].湖北工业大学学报200015(2):35-38.
16
哈文波.虚拟现实技术在远外侧入路显微解剖和颅底肿瘤个性化手术入路的应用研究[D].吉林大学,2010.
17
李宬润,刘阳,梁朝阳,等.三维虚拟现实导航胸腔镜下肺叶切除技术初探[J/CD].中华腔镜外科杂志(电子版)20169(5): 307-309.
18
Sun W, Zhang L, Wang L, et al. Three-dimensionally printed template for percutaneous localization of multiple lung nodules[J]. Ann Thorac Surg, 2019108(3):883-888.
19
Miyazaki T, Yamasaki N, Tsuchiya T, et al. Airway stent insertion simulated with a three-dimensional printed airway model[J]. Annals of Thoracic Surgery, 201599(1):21-23.
20
José LA, Marcelo FJ, María Rodríguez, et al.Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction[J]. European Journal of Cardio-Thoracic Surgery201548(4):92-94.
21
张豪,黄立军,李小飞,等.3D打印钛合金胸肋骨植入物在胸壁重建中的临床应用[J]. 中国胸心血管外科临床杂志202027(3):268-273.
22
Caroline A, Maree T, Izatt B, et al. Use of 3D printing in complex spinal surgery: historical perspectives, current usage, and future directions[J]. Techniques in Orthopaedics201631(3):172-180.
[1] 叶静, 刘祚燕, 谢国省. 呼吸功能训练对心胸外科手术患者肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 515-518.
[2] 马征, 岳韦名, 高存, 司立博, 孙振国, 陈观卿, 崔京京, 曲成浩, 田辉. 基于倾向性评分匹配法的机器人与胸腔镜辅助胸外科手术治疗肺癌的近期效果比较[J]. 中华胸部外科电子杂志, 2020, 07(04): 208-213.
[3] 张云魁, 黄海涛, 张荣生, 张羽捷, 马海涛. 胸腹腔镜联合胸段食管癌根治术临床疗效分析[J]. 中华胸部外科电子杂志, 2017, 04(02): 71-77.
阅读次数
全文


摘要