切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2021, Vol. 14 ›› Issue (01): 61 -64. doi: 10.3877/cma.j.issn.1674-6899.2021.01.014

所属专题: 文献资源库

综述 上一篇    

吲哚菁绿荧光成像技术在胸外科的应用
胡俊熙 1, 陈良亮 1, 束余声 1 , ( )   
  1. 1. 225001 扬州大学临床医学院 江苏省苏北人民医院胸外科
  • 收稿日期:2020-12-02 出版日期:2021-02-28
  • 通信作者: 束余声

Application of indocyanine green fluorescence imaging technology in thoracic surgery

Junxi Hu 1, Liangliang Chen 1, Yusheng Shu 1 , ( )   

  1. 1. Department of Thoracic Surgery, Northern Jiangsu People′s Hospital, Clinical Medical School of Yangzhou University, Yangzhou 225001, China
  • Received:2020-12-02 Published:2021-02-28
  • Corresponding author: Yusheng Shu

吲哚菁绿荧光成像技术是利用近红外光线激发吲哚菁绿的荧光属性,所发出的荧光信号再由专门的腔镜系统进行收集,并将信号传输到显示器上,从而实现术中实时成像的一门技术。它可以观察术中特定组织的靶向标记或评估组织血流灌注情况。近年随着对吲哚菁绿的物理特性研究越来越深入,吲哚菁绿荧光成像技术已经在血管探查、实质脏器灌注显影、软组织灌注评估、淋巴显影等方面得到应用。笔者围绕吲哚菁绿荧光成像技术在胸外科的应用进行阐述。

Indocyanine green fluorescence imaging technology is a real-time imaging technology. It takes advantage of the fluorescent properties of indocyanine green, which can be excited by near-infrared light. The fluorescent signal it emits is collected by a special endoscopic system, and the signal is transmitted to the display so that the image can be seen in real time. It can look at specific targets during the operation, or show the blood perfusion of the tissue. In recent years, the physical properties of indocyanine green have been studied more and more deeply. Clinically, indocyanine green fluorescence imaging technology has been used in many aspects, such as vascular exploration, parenchymal organ perfusion development, soft tissue perfusion evaluation, lymphatic development, etc. This review focuses on the indocyanine green fluorescence imaging technology in thoracic surgery.

1
Schaafsma BE, Mieog JSD, Hutteman M, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery [J]. Journal of Surgical Oncology, 2011, 104(3): 323-332.
2
Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation [J]. Molecular Imaging, 2010, 9(5): 237-255.
3
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
4
Okusanya Olugbenga T, Hess Nicholas R, Luketich James D, et al. Infrared intraoperative fluorescence imaging using indocyanine green in thoracic surgery[J]. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 2018, 53(3): 512-518.
5
Boni L, David G, Mangano A, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery [J]. Surgical Endoscopy, 2015, 29(7): 2046-2055.
6
Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography [J]. Surv Ophthalmol, 2000, 45(1): 15-27.
7
Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery[J]. International Journal of Biomedical Imaging, 2012, 2012(1): 940585. DOI: 10.1155/2012/940585
8
Reinhart MB, Huntington CR, Blair LJ, et al. Indocyanine green [J]. Surgical Innovation, 2015, 23(2): 166-175.
9
Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting [J]. American Journal of Ophthalmology, 2011, 151(5): 745-751.
10
Ogawa M, Kosaka N, Choyke PL, et al. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green [J]. Cancer Research, 2009, 69(4): 1268-1272.
11
Moody ED, Viskari PJ, Colyer CL. Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection [J]. J Chromatogr B Biomed Sci Appl, 1999, 729(1): 55-64.
12
De Grand AM, Lomnes SJ, Lee DS, et al. Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons [J]. J Biomed Opt, 2006, 11(1): 014007. DOI: 10.1117/1.2170579
13
Yousefi M, Ghaffari P, Nosrati R, et al. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer [J]. Cell Oncol (Dordr), 2020, 43(1): 31-49.
14
Aberle DR, Demello S, Berg CD, et al. Results of the two incidence screenings in the national lung screening trial [J]. N Engl J Med, 2013, 369(10): 920-931.
15
Geraci TC, Ferrari-Light D, Kent A, et al. Technique, outcomes with navigational bronchoscopy using indocyanine green for robotic segmentectomy [J]. The Annals of Thoracic Surgery, 2019, 108(2): 363-369.
16
Anayama T, Qiu J, Chan H, et al. Localization of pulmonary nodules using navigation bronchoscope and a near-infrared fluorescence thoracoscope [J]. The Annals of Thoracic Surgery, 2015, 99(1): 224-230.
17
Bolton WD, Cochran T, Ben-Or S, et al. Electromagnetic navigational bronchoscopy reduces the time required for localization and resection of lung nodules [J]. Innovations (Phila), 2017, 12(5): 333-337.
18
陈亮,葛明建. 肺段切除术中段间平面显示方法的研究进展[J]. 中国肺癌杂志,2020, 23(9): 818-823.
19
Tane S, Nishio W, Nishioka Y, et al. Evaluation of the residual lung function after thoracoscopic segmentectomy compared with lobectomy [J]. The Annals of Thoracic Surgery, 2019, 108(5): 1543-1550.
20
张彤,马永富,石渊博,等. 荧光染色法与改良膨胀萎陷法判定段间平面在解剖性肺段切除术中的病例对照研究 [J/CD]. 中华腔镜外科杂志(电子版), 2019, 12(6): 356-360.
21
Misaki N, Chang SS, Gotoh M, et al. A novel method for determining adjacent lung segments with infrared thoracoscopy [J]. The Journal of Thoracic and Cardiovascular Surgery, 2009, 138(3): 613-618.
22
Matsuura Y, Mun M, Ichinose J, et al. Recent fluorescence-based optical imaging for video-assisted thoracoscopic surgery segmentectomy [J]. Ann Transl Med, 2019, 7(2): 32-32.
23
Landsman ML, Kwant G, Mook GA, et al. Light-absorbing properties, stability, and spectral stabilization of indocyanine green [J]. J Appl Physiol, 1976, 40(4): 575-583.
24
Chen R, Ma Y, Li C, et al. A pilot study of pulmonary segmentectomy with indocyanine green near-infrared angiography[J]. Surgical Innovation, 2019, 26(3): 337-343.
25
Mehta M, Patel YS, Yasufuku K, et al. Near-infrared mapping with indocyanine green is associated with an increase in oncological margin length in minimally invasive segmentectomy [J]. The Journal of Thoracic and Cardiovascular Surgery, 2019, 157(5): 2029-2035.
26
Veronesi U, Paganelli G, Galimberti V, et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes[J]. Lancet, 1997, 349(9069): 1864-1867.
27
Albertini JJ, Cruse CW, Rapaport D, et al. Intraoperative radio-lympho-scintigraphy improves sentinel lymph node identification for patients with melanoma [J]. Ann Surg, 1996, 223(2): 217-224.
28
Thompson JF, Mccarthy WH, Bosch CM, et al. Sentinel lymph node status as an indicator of the presence of metastatic melanoma in regional lymph nodes [J]. Melanoma Res, 1995, 5(4): 255-260.
29
Little AG, Dehoyos A, Kirgan DM, et al. Intraoperative lymphatic mapping for non-small cell lung cancer: the sentinel node technique[J]. Journal of Thoracic & Cardiovascular Surgery, 1999, 117(2): 220-220.
30
Tajima Y, Murakami M, Yamazaki K, et al. Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer [J]. Annals of Surgical Oncology, 2010, 17(7): 1787-1793.
31
Gilmore DM, Khullar OV, Jaklitsch MT, et al. Identification of metastatic nodal disease in a phase 1 dose-escalation trial of intraoperative sentinel lymph node mapping in non-small cell lung cancer using near-infrared imaging[J]. The Journal of Thoracic and Cardiovascular Surgery, 2013, 146(3): 562-570.
32
Darling GE. Commentary on "finding the true " no " cohort: technical aspects of near-infrared sentinel lymph node mapping in non-small cell lung cancer" [J]. Ann Surg, 2020, 272(4): 589-589.
33
Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA: A Cancer Journal for Clinicians, 2011, 61(2): 69-90.
34
Nagpal K, Ahmed K, Vats A, et al. Is minimally invasive surgery beneficial in the management of esophageal cancer. a meta-analysis [J]. Surgical Endoscopy, 2010, 24(7): 1621-1629.
35
Rino Y, Yukawa N, Sato T, et al. Visualization of blood supply route to the reconstructed stomach by indocyanine green fluorescence imaging during esophagectomy[J]. BMC Med Imaging, 2014, 14(1): 8-8.
36
Ohi M, Toiyama Y, Mohri Y, et al. Prevalence of anastomotic leak and the impact of indocyanine green fluorescein imaging for evaluating blood flow in the gastric conduit following esophageal cancer surgery[J]. Esophagus, 2017, 14(4): 351-359.
37
Zehetner J, Demeester SR, Alicuben ET, et al. Intraoperative assessment of perfusion of the gastric graft and correlation with anastomotic leaks after esophagectomy [J]. Annals of Surgery, 2015, 262(1): 74-78.
38
Vecchiato M, Martino A, Sponza M, et al. Thoracic duct identification with indocyanine green fluorescence during minimally invasive esophagectomy with patient in prone position [J]. Dis Esophagus, 2020.DOI: 10.1093/dote/doaa030
39
Brinkmann S, Schroeder W, Junggeburth K, et al. Incidence and management of chylothorax after Ivor Lewis esophagectomy for cancer of the esophagus [J]. J Thorac Cardiovasc Surg, 2016, 151(5): 1398-1404.
40
Reisenauer JS, Puig CA, Reisenauer CJ, et al. Treatment of postsurgical chylothorax [J]. Ann Thorac Surg, 2018, 105(1): 254-262.
41
Petri R, Zuccolo M, Brizzolari M, et al. Minimally invasive esophagectomy: thoracoscopic esophageal mobilization for esophageal cancer with the patient in prone position [J]. Surg Endosc, 2012, 26(4): 1102-1107.
42
Mihara M, Hara H, Shibasaki J, et al. Indocyanine green lymphography and lymphaticovenous anastomosis for generalized lymphatic dysplasia with pleural effusion and ascites in neonates [J]. Annals of Vascular Surgery, 2015, 29(6): 1111-122.
[1] 张耀, 高峥嵘, 张强, 赵昌松, 陈佳敏, 赵汝岗, 马睿. 微创手术治疗18例布鲁菌病髋关节炎合并早期股骨头坏死的疗效[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 281-287.
[2] 蓝伟锋, 陈志坚, 洪汉崟, 陈剑伟, 黄兴华, 池小斌, 陈永标. 吲哚菁绿在腹腔镜肝切除中的应用[J]. 中华普通外科学文献(电子版), 2021, 15(04): 309-312.
[3] 丁相元, 任效瑛, 闫慧明. 微创胰十二指肠切除术治疗胰腺导管腺癌围手术期和近远期疗效的Meta分析[J]. 中华普通外科学文献(电子版), 2021, 15(04): 313-320.
[4] 唐卫东, 邓杰文, 姜超, 杨秀林, 陈霞. 86例肝门部胆管癌的解剖学观察及三维重建联合ICG分子荧光成像技术的应用价值[J]. 中华普外科手术学杂志(电子版), 2021, 15(04): 392-395.
[5] 刘乾, 尹振宇, 李晓梅, 齐文博, 刘乐, 白玉萍, 陈昊. 吲哚菁绿在胃癌手术中的应用三例报道[J]. 中华普外科手术学杂志(电子版), 2021, 15(02): 235-236.
[6] 陆晓峰, 刘颂, 艾世超, 夏雪峰, 沈晓菲, 宋鹏, 康星, 郑黎明, 王萌, 管文贤. 纳米碳与吲哚菁绿导航腹腔镜胃癌根治术淋巴结清扫的对比性研究[J]. 中华普外科手术学杂志(电子版), 2021, 15(02): 146-149.
[7] 朱可安, 陈灵, 李昭, 黄薇. 应用单孔腹腔镜开展常见妇科手术的可行性探讨[J]. 中华腔镜外科杂志(电子版), 2021, 14(03): 158-162.
[8] 潘立超, 尹注增, 赵之明. 吲哚菁绿荧光显像在肝胆胰机器人手术中的应用实践与教学[J]. 中华腔镜外科杂志(电子版), 2021, 14(03): 149-151.
[9] 胡志豪, 李瑞欣, 王国俊. 食管胃结合部腺癌的微创外科治疗现状与展望[J]. 中华腔镜外科杂志(电子版), 2021, 14(03): 181-186.
[10] 朱中飞, 何天霖. 达芬奇机器人脾动脉瘤切除重建一例[J]. 中华腔镜外科杂志(电子版), 2021, 14(02): 112-115.
[11] 李成刚, 赵之明, 胡明根, 谭向龙, 张煊, 周志鹏, 姜楠, 贾育泽. 吲哚菁绿在机器人肝脏FNH切除术中的应用[J]. 中华腔镜外科杂志(电子版), 2021, 14(01): 15-18.
[12] 中国医师协会结直肠肿瘤专业委员会NOTES专委会. 经自然腔道内镜手术(NOTES)专家共识[J]. 中华结直肠疾病电子杂志, 2021, 10(04): 337-342.
[13] 杜瑞, 周家杰, 王峰, 李东亮, 佟贵繁, 丁旭, 张琪, 王伟, 汪刘华, 汤东, 王道荣. 吲哚菁绿荧光造影辅助腹腔镜个体化侧方淋巴清扫策略治疗中低位直肠癌五例报告[J]. 中华结直肠疾病电子杂志, 2021, 10(02): 211-215.
[14] 周军, 赵月明, 宋常华, 赵志明, 仲伟明, 邓昌武, 张聿民, 李树志. 神经内镜手术治疗自发性幕上中等程度脑出血的临床效果[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 51-55.
[15] 陈立华, 夏勇, 孙恺, 陈文锦, 张洪钿, 徐如祥. 术中肿瘤荧光剂应用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 109-115.
阅读次数
全文


摘要