切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2020, Vol. 13 ›› Issue (01) : 61 -64. doi: 10.3877/cma.j.issn.1674-6899.2020.01.015

所属专题: 文献

综述

机器学习在医学中的应用现状
谭向龙1, 赵之明1,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肝胆外二科
  • 收稿日期:2019-12-30 出版日期:2020-02-28
  • 通信作者: 赵之明

Application of machine learning in medicine

Xianglong Tan1, Zhiming Zhao1,()   

  1. 1. The Second Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People′s Liberation Army General Hospital, Haidian district, Beijing 100853, China
  • Received:2019-12-30 Published:2020-02-28
  • Corresponding author: Zhiming Zhao
  • About author:
    Corresponding author: Zhao Zhiming, Email:
引用本文:

谭向龙, 赵之明. 机器学习在医学中的应用现状[J/OL]. 中华腔镜外科杂志(电子版), 2020, 13(01): 61-64.

Xianglong Tan, Zhiming Zhao. Application of machine learning in medicine[J/OL]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2020, 13(01): 61-64.

人工智能在近年来已广泛应用于社会各个领域,取得巨大成就。但公众对人工智能的认知仍存在一定误区,笔者就人工智能的当前定义、主要思想及方法做了简要回顾;对当前主流的人工智能技术——机器学习及不足做简要介绍。介绍当前人工智能在医学领域中的应用。相信随着技术的进步,在可见的未来,人工智能将作为医师的强有力的助手,减轻医师负担,减少误诊、误治,提高医疗救治水平。

In recent years, artificial intelligence(AI) has been widely used in various fields of society, and has made great achievements. However, there are still some misunderstandings about AI, and this paper makes a brief introduction of the current definition of AI and the main thinking methods; then introduces the common used technique: machine leaning and its shortcomings briefly. The application of AI in the fields of medicine is also introduced. It is believed that with the progress of technology, in the foreseeable future, AI will serve as a powerful assistant to doctors, reduce the burden on doctors, reduce misdiagnosis, mistreatment, improve the level of medical treatment.

1
Jim X Chen. The evolution of computing: alphago[J]. Computing in Science & Engineering, 2016, 18(4):4-7.
2
Shijun Wang, Ronald M Summers. Machine learning and radiology[J]. Medical Image Analysis, 2012, 16(5):933-951.
3
Armstrong Stephen. The computer will assess you now.[J]. BMJ (Clinical research ed.),2016,355. DOI:10.1136/bmj.i5680
4
Ahuja Abhimanyu S. The impact of artificial intelligence in medicine on the future role of the physician.[J]. PeerJ,2019,7:7702. DOI:10.7717/peerj.7702
5
张国英,何元娇. 人工智能知识体系及学科综述[J]. 计算机教育,2010,8(8):25-28.
6
Hopfield JJ. Brain, neural networks, and computation[J]. Rev Mod Phys,1999,71(2):431-437.
7
蒋宗岳. 信息论与控制论的完美融合——从AI的新进展说起[J]. 数字技术与应用,2018,36(12):239-243.
8
Feng-Hsiung H. Chess hardware in deep blue[J]. Computing in Science & Engineering,2006,8(1):50-60.
9
Sabri Özden, Baris Saylam, Mesut Tez. Is artificial neural network an ideal modelling technique[J]. Journal of Critical Care,2017,40:292-292. DOI:10.1016/j.jcrc.2017.06.011
10
Hopfield JJ. Transforming neural computations and representing time[J]. P Natl Acad Sci USA, 1996,93(26):15440-15444.
11
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536.
12
Marcus G. Innateness, AlphaZero, and Artificial Intelligence. arXiv e-prints [Internet]. 2018 January 01, 2018:[arXiv:1801.05667 p.]. Available from:

URL    
13
Arulkumaran K, Cully A, Togelius J. AlphaStar: An Evolutionary Computation Perspective. arXiv e-prints [Internet]. 2019 February 01, 2019:[arXiv:1902.01724 p.]. Available from:

URL    
14
Shakey [Available from:

URL    
15
Brooks RA. Intelligence without reason. Proceedings of the 12th international joint conference on Artificial intelligence - Volume 1[M].Sydney, New South Wales, Australia: Morgan Kaufmann Publishers Inc, 1991, 569-595.
16
Foreman N, Evett M. Preventing overfitting in GP with canary functions. Proceedings of the 7th annual conference on Genetic and evolutionary computation[D].Washington DC.USA: Association for Computing Machinery,2005,1779-1780.
17
Li Y. Deep Reinforcement Learning. arXiv e-prints [Internet]. 2018 October 01, 2018:[arXiv:1810.06339 p.]. Available from:

URL    
18
Shafahi A, Ronny Huang W, Studer C, Feizi S, Goldstein T. Are adversarial examples inevitable? arXiv e-prints [Internet]. 2018 September 01, 2018:[arXiv:1809.02104 p.]. Available from:

URL    
19
Pedreschi D, Giannotti F, Guidotti R, et al. Meaningful Explanations of Black Box AI Decision Systems[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:9780-9784.
20
Yu H, Shen Z, Miao C, et al.arXiv e-prints [Internet]. 2018 December 01, 2018:[arXiv:1812.02953 p.]. Available from:

URL    
21
刘荣. 走进智能医学新时代[J/CD]. 中华腔镜外科杂志(电子版), ,2018,11(2):65-67.
22
尤晋泽,林岩. 大数据时代认知医疗的数据安全伦理透视——以IBM Watson Health为例[J]. 医学与哲学(A),2018,39(3):28-31.
23
Martinez-Franco AI, Sanchez-Mendiola M, Mazon-Ramirez JJ, et al. Diagnostic accuracy in family medicine residents using a clinical decision support system (dxplain): a randomized-controlled trial[J]. Diagnosis (Berl),2018,5(2):71-76.
24
Chandrasekar R. Elementary? question answering, ibm′s watson, and the jeopardy! challenge[J]. Resonance,2014,19(3):222-241.
25
Simon G, DiNardo CD, Takahashi K, et al. Applying artificial intelligence to address the knowledge gaps in cancer care[J]. Oncologist,2019,24(6):772-782.
26
Komura D, Ishikawa S. Machine learning methods for histopathological image analysis[J]. Comp Struct Biotechnol J,2018,16:34-42. DOI:10.1016/j.csbj.2018.01.001
27
Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations[J]. Prog Retin Eye Res,2019,72. DOI:10.1016/j.preteyeres.2019.04.003
28
Paini A, Sala Benito JV, Bessems J, et al. From in vitro to in vivo: integration of the virtual cell based assay with physiologically based kinetic modelling[J]. Toxicol In Vitro,2017,45(2):241-248.
29
AlQuraishi M. Alphafold at casp13[J]. Bioinformatics,2019,35(22):4862-4865.
30
Fleming N. How artificial intelligence is changing drug discovery[J]. Nature,2018,557(7707):55-57.
[1] 王佳佳, 詹韵韵, 姜凡, 孙碧云, 毕玉, 李如冰, 彭梅. Peyton四步教学法在超声住院医师规范化培训颈部淋巴结分区中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 814-818.
[2] 周易, 张红梅, 尹立雪, 杨浩, 付培. 四川省超声医学质量控制指标动态变化趋势分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 664-670.
[3] 王晓娜, 张宁, 宋伟, 杨明, 李丽, 薛红元. 河北省超声医学质量管理与控制现状分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 675-680.
[4] 张亚庆, 黄旴宁, 许珊珊, 刘小蓝. 海南省二级与三级医院超声医学质量控制指标分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 681-685.
[5] 牛梓涵, 李文波, 孝梦甦, 张青, 张一休, 朱庆莉. 超声影像教学融合思政元素的实践初探与效果评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 597-601.
[6] 曹雨欣, 毛卓君, 梁嘉赫, 伊江浦, 张泽凯, 马文帅, 陈云涛, 李晓倩, 张宇新, 曹铁生, 袁丽君. 3D打印心脏模型在模拟左心耳封堵术临床教学中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 602-607.
[7] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[8] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[9] 陈雪琪, 张莉, 郭乡平, 罗林枝, 晋思琦, 陈程, 赵瑞娜, 施敏, 杨筱, 李建初. 基于可验证自学学分管理系统比较超声医师继续教育中手机APP端与PC端需求[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 527-533.
[10] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[11] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[12] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[13] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[14] 陈明敏, 任菁菁. 全科医师叙事能力探讨与思考[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 836-840.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?