切换至 "中华医学电子期刊资源库"

中华腔镜外科杂志(电子版) ›› 2020, Vol. 13 ›› Issue (01): 61 -64. doi: 10.3877/cma.j.issn.1674-6899.2020.01.015

所属专题: 文献资源库

综述 上一篇    

机器学习在医学中的应用现状
谭向龙 1, 赵之明 1 , ( )   
  1. 1. 100853 北京,解放军总医院第一医学中心肝胆外二科
  • 收稿日期:2019-12-30 出版日期:2020-02-28
  • 通信作者: 赵之明

Application of machine learning in medicine

Xianglong Tan 1, Zhiming Zhao 1 , ( )   

  1. 1. The Second Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People′s Liberation Army General Hospital, Haidian district, Beijing 100853, China
  • Received:2019-12-30 Published:2020-02-28
  • Corresponding author: Zhiming Zhao
  • About author:
    Corresponding author: Zhao Zhiming, Email:

人工智能在近年来已广泛应用于社会各个领域,取得巨大成就。但公众对人工智能的认知仍存在一定误区,笔者就人工智能的当前定义、主要思想及方法做了简要回顾;对当前主流的人工智能技术——机器学习及不足做简要介绍。介绍当前人工智能在医学领域中的应用。相信随着技术的进步,在可见的未来,人工智能将作为医师的强有力的助手,减轻医师负担,减少误诊、误治,提高医疗救治水平。

In recent years, artificial intelligence(AI) has been widely used in various fields of society, and has made great achievements. However, there are still some misunderstandings about AI, and this paper makes a brief introduction of the current definition of AI and the main thinking methods; then introduces the common used technique: machine leaning and its shortcomings briefly. The application of AI in the fields of medicine is also introduced. It is believed that with the progress of technology, in the foreseeable future, AI will serve as a powerful assistant to doctors, reduce the burden on doctors, reduce misdiagnosis, mistreatment, improve the level of medical treatment.

1
Jim X Chen. The evolution of computing: alphago[J]. Computing in Science & Engineering, 2016, 18(4):4-7.
2
Shijun Wang, Ronald M Summers. Machine learning and radiology[J]. Medical Image Analysis, 2012, 16(5):933-951.
3
Armstrong Stephen. The computer will assess you now.[J]. BMJ (Clinical research ed.),2016,355. DOI: 10.1136/bmj.i5680
4
Ahuja Abhimanyu S. The impact of artificial intelligence in medicine on the future role of the physician.[J]. PeerJ,2019,7:7702. DOI: 10.7717/peerj.7702
5
张国英,何元娇. 人工智能知识体系及学科综述[J]. 计算机教育,2010,8(8):25-28.
6
Hopfield JJ. Brain, neural networks, and computation[J]. Rev Mod Phys,1999,71(2):431-437.
7
蒋宗岳. 信息论与控制论的完美融合——从AI的新进展说起[J]. 数字技术与应用,2018,36(12):239-243.
8
Feng-Hsiung H. Chess hardware in deep blue[J]. Computing in Science & Engineering,2006,8(1):50-60.
9
Sabri Özden, Baris Saylam, Mesut Tez. Is artificial neural network an ideal modelling technique[J]. Journal of Critical Care,2017,40:292-292. DOI: 10.1016/j.jcrc.2017.06.011
10
Hopfield JJ. Transforming neural computations and representing time[J]. P Natl Acad Sci USA, 1996,93(26):15440-15444.
11
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536.
12
Marcus G. Innateness, AlphaZero, and Artificial Intelligence. arXiv e-prints [Internet]. 2018 January 01, 2018:[arXiv:1801.05667 p.]. Available from:

URL    
13
Arulkumaran K, Cully A, Togelius J. AlphaStar: An Evolutionary Computation Perspective. arXiv e-prints [Internet]. 2019 February 01, 2019:[arXiv:1902.01724 p.]. Available from:

URL    
14
Shakey [Available from:

URL    
15
Brooks RA. Intelligence without reason. Proceedings of the 12th international joint conference on Artificial intelligence - Volume 1[M].Sydney, New South Wales, Australia: Morgan Kaufmann Publishers Inc, 1991, 569-595.
16
Foreman N, Evett M. Preventing overfitting in GP with canary functions. Proceedings of the 7th annual conference on Genetic and evolutionary computation[D].Washington DC.USA: Association for Computing Machinery,2005,1779-1780.
17
Li Y. Deep Reinforcement Learning. arXiv e-prints [Internet]. 2018 October 01, 2018:[arXiv:1810.06339 p.]. Available from:

URL    
18
Shafahi A, Ronny Huang W, Studer C, Feizi S, Goldstein T. Are adversarial examples inevitable? arXiv e-prints [Internet]. 2018 September 01, 2018:[arXiv:1809.02104 p.]. Available from:

URL    
19
Pedreschi D, Giannotti F, Guidotti R, et al. Meaningful Explanations of Black Box AI Decision Systems[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:9780-9784.
20
Yu H, Shen Z, Miao C, et al.arXiv e-prints [Internet]. 2018 December 01, 2018:[arXiv:1812.02953 p.]. Available from:

URL    
21
刘荣. 走进智能医学新时代[J/CD]. 中华腔镜外科杂志(电子版), ,2018,11(2):65-67.
22
尤晋泽,林岩. 大数据时代认知医疗的数据安全伦理透视——以IBM Watson Health为例[J]. 医学与哲学(A),2018,39(3):28-31.
23
Martinez-Franco AI, Sanchez-Mendiola M, Mazon-Ramirez JJ, et al. Diagnostic accuracy in family medicine residents using a clinical decision support system (dxplain): a randomized-controlled trial[J]. Diagnosis (Berl),2018,5(2):71-76.
24
Chandrasekar R. Elementary? question answering, ibm′s watson, and the jeopardy! challenge[J]. Resonance,2014,19(3):222-241.
25
Simon G, DiNardo CD, Takahashi K, et al. Applying artificial intelligence to address the knowledge gaps in cancer care[J]. Oncologist,2019,24(6):772-782.
26
Komura D, Ishikawa S. Machine learning methods for histopathological image analysis[J]. Comp Struct Biotechnol J,2018,16:34-42. DOI: 10.1016/j.csbj.2018.01.001
27
Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations[J]. Prog Retin Eye Res,2019,72. DOI: 10.1016/j.preteyeres.2019.04.003
28
Paini A, Sala Benito JV, Bessems J, et al. From in vitro to in vivo: integration of the virtual cell based assay with physiologically based kinetic modelling[J]. Toxicol In Vitro,2017,45(2):241-248.
29
AlQuraishi M. Alphafold at casp13[J]. Bioinformatics,2019,35(22):4862-4865.
30
Fleming N. How artificial intelligence is changing drug discovery[J]. Nature,2018,557(7707):55-57.
[1] 张莉, 杨筱, 陈文, 王健, 赵博, 张君君, 王亚红, 陈程, 董一凡, 蔡胜, 姜玉新, 李建初. 全国超声专业住院医师工作任务调研分析[J]. 中华医学超声杂志(电子版), 2021, 18(09): 880-885.
[2] 臧爱华, 姜明, 孟聪, 刘梦泽, 李霞. 人工智能系统评估BI-RADS 4类乳腺肿块的应用价值[J]. 中华医学超声杂志(电子版), 2021, 18(08): 795-799.
[3] 陈骊珠, 黄瑛, 任卫东. 辽宁省超声医学质量控制基线调查情况及现状分析[J]. 中华医学超声杂志(电子版), 2021, 18(07): 638-642.
[4] 王佳佳, 王金萍, 姜凡, 李保启. 2019年度安徽省三级中医院和其他三级综合医院超声质量控制调查比较[J]. 中华医学超声杂志(电子版), 2021, 18(07): 643-646.
[5] 郭爽萍, 倪东, 尚宁, 王丽敏, 胡歆迪, 吕栩再, 梁永栋. 基于深度学习的人工智能测量婴儿非偏心型髋关节的研究[J]. 中华医学超声杂志(电子版), 2021, 18(05): 467-471.
[6] 张红梅, 尹立雪, 李春梅, 陈琴, 刘承, 付培. 四川省超声医学专业质量控制基线调查报告[J]. 中华医学超声杂志(电子版), 2021, 18(03): 313-320.
[7] 邢家诚, 闫石, 蔡莉. 深度学习在乳腺X线摄影中的应用[J]. 中华乳腺病杂志(电子版), 2021, 15(04): 238-241.
[8] 龙天柱, 姚育芝, 罗家月, 蔡媛璇, 梁震, 樊哲, 朱彩荣, 潘玉鸿, 马宏民. 哺乳期乳腺脓肿抗生素治疗的回顾性研究[J]. 中华乳腺病杂志(电子版), 2021, 15(04): 214-217.
[9] 马黔红. 生殖医学中的宫腔镜应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 620-.
[10] 叶畅畅, 张彦, 小林宏明. 中、日、美高等口腔医学教育体系与科研人才培养[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 173-177.
[11] 章璟, 吕涛, 张鹤, 胡传义, 崔心刚, 姜宁. 腔镜时代体外冲击波碎石患者的选择[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(04): 354-357.
[12] 侯祺, 相洋, 吴娜珊, 肖月, 肖龙, 李潇, 王锐, 孙中义. 机器学习算法模型预测体外冲击波碎石治疗输尿管结石的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(04): 280-284.
[13] 郭亮, 徐剑铖, 徐智. "分层、个体化"教学在呼吸与危重症医学专科医师规范化培训中的探索[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 545-546.
[14] 李玉民, 陈昊, 冯泽东. 原发性肝癌外科治疗[J]. 中华肝脏外科手术学电子杂志, 2021, 10(04): 343-347.
[15] 陈扬霖, 胡亚洲, 李香蕊, 沈琳. 胜任力导向的肿瘤学专业学位研究生培养模式探索与实践[J]. 中华临床医师杂志(电子版), 2021, 15(04): 293-297.
阅读次数
全文


摘要